
Distributed Scientific Workflows:
Techniques, Tools and Applications

Omer F. Rana
School of Computer Science and

Welsh eScience Centre
Cardiff University, UK

o.f.rana@cs.cardiff.ac.uk

http://www.gridworkflow.org/
http://users.cs.cf.ac.uk/O.F.Rana/icsoc08-workflow.ppt

Thanks to:

• David Walker, Ian Taylor, Matthew Shields, Lican
Huang, Ali Shaikh Ali, Richard White at Cardiff

• Bertram Ludaescher at UC Davis

• Cecilia Gomes at UNL-Lisbon

• John Domingue at Open University

• Steve McGough, John Darlington at Imperial College

• Luc Moreau and Terry Payne, University of
Southampton

• Zhiming Zhao, University of Amsterdam

Some material contained in this tutorial has been obtained from
the individuals mentioned above.

Overview

• Introduction + Examples of
Scientific Workflows

• Constructing and Managing
Workflow

• Application Example: Distributed
Data Mining using FAEHIM

• Adaptive Workflows

• Workflow-related research themes

Time Division

13:00 – 13:50 Workflow examples, types,
general issues, scientific vs. business
workflows

13:50 – 14:00 Break

14:00 – 14:50 Workflow Optimisation,
Dynamic Adaptation, Semantics,
Provenance

14:50 – 15:00 Triana Demonstration

15:00 – 15:10 Discussion + Research
Directions

Workflow
• ‘70s: Skip Ellis And Gary Nutt (OfficeTalk)

– Xerox Parc “Office Automation Systems”

– “to reduce the complexity of the user's interface to the
[office information] system, control the flow of information,
and enhance the overall efficiency of the office.” (Ellis, Nutt
1980)

• “Representation, Specification, and Automation of Office
Procedures” (Michael D. Zisman, PhD Thesis, University of

Pennsylvania, Warton School of Business, 1977)

– Often seen as a technique to automate existing
“processes”

– Very popular in the business world

• Over 20 years gap:

– Availability of Computer Networks

– Workflow (Business Process) was integral part of applications

Adapted From:

Aleksander Slominski

Ellis, C. A.; Nutt, G. J. Office Information Systems and Computer Science.
In ACM Computing Surveys, 12 (1980) 1, pp. 27-60.

Historical Perspective
• ’65-’75 Decompose Applications

– Data And Code Separated

• ’75-’85 Database Management

– DBMS Used To Share Data

• ’85-’95 User Interface Management

– User Interface Separated

• ’95-’08 Workflow Management

– Isolate Business Process

– Emerging standards – such as those based on the
Service Oriented Architecture

– Use of Service Mashups

“Workflow Management” Aalst, van Hee

From:

Aleksander Slominski

Workflow
“The automation of a business process, in whole or part,
where documents, information or tasks are passed from
one participant to another to be processed, according to
a set of procedural rules “

Workflow Management Coalition (WfMC)

From:

Aleksander Slominski

WFMS And WF Engine
• Workflow Management System (WFMS)

– “A system that defines, creates and manages the
execution of workflows through the use of
software, running on one or more workflow engines,
which is able to interpret the process definition,
interact with workflow participants and, where
required, invoke the use of IT tools and
applications.”

• Workflow Engine

– “A software service or `engine’ that provides the
run time execution environment for a process
instance.”

From:

Aleksander Slominski

A representation that shows

– precedence relationship (links) between

activities

May be
Acyclic (no loops) or cyclic
Contain annotations associated
with activities or links

Workflow InstanceWorkflow InstanceWorkflow Instance

Workflow (+ Enactment)

Resource layer
1000s of PCs ->massive supercomputers

and data sources

Information/
Naming
Services

Information/
Naming
Services

(co-)scheduling
Service

(co-)scheduling
Service

Accounting
Service

Accounting
Service

Security
Service
Security
Service

Event/Mesg
Service

Event/Mesg
Service

Discovery
service

Discovery
service

User Help
Services

User Help
Services

Monitoring
Service

Monitoring
Service

Peer Creation
& resolution
Services

Peer Creation
& resolution
Services

Information
Routing

Information
Routing

Infrastructure Services

Application Services Layer

User Portals/ Science Portals

Launch, configure
And control Orchestration Service

Workflow Engine

From:

Aleksander Slominski

Network

Problems with “Predictability”

Scientific Workflows
• What makes it different (how it is

applied)?
– Support for large data flows
– Need to do parameterized

execution of large number of
jobs

– Need to monitor and control
workflow execution including ad-
hoc changes

– Need to execute in a dynamic
environment where resources
are not known a priori and may
need to adapt to changes

– Hierarchical execution with sub-
workflows created and
destroyed when necessary

• Science Domain specific
requirements.

Workflow World

• Triana
• Taverna/SCUFL
• GridAnt
• Condor DAG
• CoG DAG
• SWFL
• BioOpera/JOpera
• BEPL4WS
• OASIS WSBEPL
• YAWL
• GSFL
• Askalon
• OMII-BPEL, etc
Origin (?):
Problem Solving Environments
(MatLab, Mathematica, SciRun,

NetSolve, Ninf, Nimrod etc)

http://www.extreme.indiana.edu/swf-survey/

http://www.nesc.ac.uk/action/esi/contribution.cfm?Title=303

A chemistry lab is a hostile environment
without much room to maneuver

what can be captured automatically with
sensors?

what must rely on manual annotation?

The fume
cupboard

The chemist

From: Jeremy Frey

very precise scales - but not connected to any recording device

Competition
for space

From: Jeremy Frey

critical data
entry

From: Jeremy Frey

Getting not just the what and how, but the why

By Making Tea! From: Jeremy Frey

Getting not just the what and how, but the why

By Making Tea! From: Jeremy Frey

Promoter Identification Workflow

Source: Matt Coleman (LLNL)Source: Matt Coleman (LLNL)

Source: NIH BIRN (Jeffrey Grethe, UCSD)Source: NIH BIRN (Jeffrey Grethe, UCSD)

Montage (http://montage.ipac.caltech.edu/)

• Deliver science-grade custom mosaics on
demand

– Produce mosaics from a wide range of data
sources (possibly in different spectra)

– User-specified parameters of projection,
coordinates, size, rotation and spatial
sampling.

The Large Magellanic Cloud (LMC) is a nearby satellite galaxy of our own galaxy,
the Milky Way. At a distance of slightly less than 50 kiloparsecs (≈160,000
light-years), the LMC is the third closest galaxy to the Milky Way. It has a mass
equivalent to approximately 10 billion times the mass of our Sun (1010 solar
masses), making it roughly 1/10 as massive as the Milky Way. The LMC is the
Fourth largest galaxy in the Local Group, the first, second and third largest places
being taken by Andromeda Galaxy (M31), our own Milky Way Galaxy, and the
Triangulum Galaxy (M33).

SAGE: Spitzer Survey of the Large Magellanic Cloud

0.5 x 0.5160

5.25 x 2.670

5.4 x 5.424MIPS

5.2. x 5.23.5, 4.5, 5.8, 8.0IRAC

Field-of-View
(arcmin)

Bands (µm)Instrument

Two epochs:
1. Oct/Nov 05

Two epochs:
Jul/Aug 05 & Oct/Nov 05

IRAC 3.6 µm

IRAC 8.0 µm

MIPS 24 µm

Images Courtesy Margaret Meixner (PI)
From: G. Bruce Berriman

IRAC:
Infrared
Array
Camera

MIPS:
Multiband
Imaging
Photometry

Montage Workflow (from Ewa Deelman)

Montage workflow

BDWorld Components

From: Richard White

Submit scientific name; retrieve
accepted name & synonyms
for species

Model of climatic conditions
where species is currently
found

OpenModeller

Openmodeller.sourceforge.net

BioDiversity Questions
• How should conservation efforts be

concentrated?
– (example of Biodiversity Richness &
Conservation Evaluation)

• Where might a species be expected to
occur, under present or predicted climatic
conditions?
– (example of Bioclimatic & Ecological
Niche Modelling)

• How can geographical information assist in
inferring possible evolutionary pathways?
– (example of Phylogenetic Analysis &
Palaeoclimate Modelling)

Resource used in these biodiversity studies

• Data sources:

– Catalogue of Life (names of species: Species 2000, GBIF)

– Biodiversity data

• Descriptive data

• Distribution of specimens and observations

– Geographical data

• Boundaries of geographical & political units

• Climate surfaces

– Genetic sequences

• Analytic tools:

– Biodiversity richness assessment – various metrics

– Bioclimatic modelling – bioclimatic ‘envelope’ generation

– Phylogenetic analysis (generation of phylogenetic trees)

Point data from various herbaria

BDW Wrapper BDW Wrapper BDW Wrapper

Remote Database Resource Tool Java Resource

Unit A

Unit B

Unit C

Triana Workflow Units

BDW Datatypes BDW Datatypes BDW Datatypes

Data Handling Tools

BGI Communications Layer

BGI Helper Tool

BDWorld Architecture

From: Richard White

GARP prediction of climatic suitability

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Triana screen-shots

Workflows in Earthquake Engineering

From: Philip Maechling

Observed Areas of Strong Ground Motion

From: Philip Maechling

Simulations Supplement Observed Data

From: Philip Maechling

SCEC/CME Scientific Workflow ConstructionSCEC/CME Scientific Workflow Construction

9000 Hazard
Curve files (9000 x
0.5 Mb = 4.5Gb)

Extract
IMR

Value

Plot
Hazard

Map

Lat/Long/Amp
(xyz file) with 3000
datapoints (100Kb)

Calculate
Hazard
Curves

Gridded Region
Definition

IMR Definition

ERF Definition

Probability of
Exceedence

and IMR
Definition

GMT Map
Configuration
Parameters

Define
Scenario

Earthquake

Pathway 1 exampleFrom: Philip Maechling

ERF: Earthquake Rupture Forecast
IMR: Earthquake Rupture Slip time function generator -

Intensity Measure Relationship

OpenSHA: Open Seismic Hazard Analysis
(http://www.opensha.org/index.html)

• In the first year, a Pathway-1 team led by Ned Field erected a new object-oriented
architecture for seismic hazard analysis, dubbed "OpenSHA" (http://www.opensha.org/).
This Java-based code implements a number of SHA conceptual objects, such as earthquake
forecast models (EFM), intensity measure relationships (IMR), and intensity measure types
(IMT). The team has thus far incorporated seven different IMR's that are applicable to
Southern California and has developed an analysis tool that lets users explore the
implications of the IMR's via a Web-enabled graphical user interface. The API between the
IMR's and the analysis tool is very general and flexible, so that any new models can be
plugged into the framework without having to change existing code. Along with the codes
that calculate seismic hazard analysis curves, we have developed Web-based analysis tools
that allow the user to explore the implications of combining various EFM's with a number of
possible IMR's. OpenSHA will thus provide the platform for integrating the research done
by the SCEC working group on Regional Earthquake Likelihood Models (RELM)
(http://www.relm.org/). An overview of the OpenSHA architecture will be presented in a
paper by N. Field, T. H. Jordan, and C. A. Cornell to be published soon in SRL.

• The OpenSHA framework has provided an interesting and challenging initial application of
our KR&R technology. A Pathway-1 team comprising SCEC scientists and AI researchers
from ISI has developed an initial knowledge base for SHA objects such as EFM's and IMR's
using a powerful KR&R inference engine named PowerLoom
(http://www.isi.edu/isd/LOOM/PowerLoom/). A Web-based tool called DOCKER (Distributed
Operations of Code with Knowledge-based descriptions for Earthquake Research) was
developed to allow users to define and perform Pathway-1 calculations by accessing the SHA
knowledge base. As the user sets up a computational pathway by specifying the hazard-curve
variables, DOCKER checks the user's selections for consistency by querying the SHA
knowledge base and warns the user of inconsistencies. Moving the SHA system into the
calculation of hazard maps will significantly increase the execution time, so this type of
consistency checking should prove useful

Component Library

Workflow
Template
Editor
(CAT)

Workflow
Template (WT)

Query for data
given metadata

L. Hearn
@ UBC

K. Olsen
@ SDSU

Execution requirements

I/O data descriptions

COMPONENTS

J. Zechar @
USC
(Teamwork:
Geo + CS)

Domain
OntologyWorkflow

Library

Metadata
Catalog

Conceptual Data
Query Engine
(DataFinder)

Data
Selection

D. Okaya
@ USC

Query for WT

Workflow
Instance (WI)

Workflow
Mapping
(Pegasus)

Executable
Workflow

Grid
information
services

Grid

Query for
components

INTEGRATED WORKFLOW ARCHITECTURE

Engineer

Tools

Tools

From: Philip Maechling

Flight Maneuver Simulation

• Project SikMa

–Interactive
simulation of a
freely flying, fully
configured, elastic
warplane

• SikMa partners
provided end-user
requirements

Mapping: Workflow Example

Scientific vs. Business Workflow

• Reproducability of results at the core of the
scientific method

– Create, manage and capture dynamic w/flows

• Scientific Exploration and User-Steering

– Flexibility of design + exploration capabilities

– Need to represent workflow variants (different
workflow configurations and settings) – support
complex scientific exploratory processes

– Support for “user-steered” workflows

– vs. more prescriptive use in business computing

• Emphasis on Data

– Heterogeneous with different access patterns

– Domain specific formats (textual, semi-structured,
visual + varying degrees of annotations)

Scientific vs. Business Workflow … 2

• Common Characteristics

– Repetitive cycle of data analysis and data
migration

– Parameter sweep or “range search” operations (can
lead to creation of multiple jobs)

– Dependencies between partial results generated
through a workflow

– Data aggregation across different repositories –
often in different formats

– Composition of complex data capture + simulation
engines in a single (often linear) pipeline

Workflow Lifecycle

• Design
– Typical workflow is graph oriented (ease of use)
– Language: how expressive is workflow
– GUI: Visual Service Composition Environment

• Deployment
– Workflow Description is sent to Workflow Engine
– Possibly validated and compiled

• Execution
– Workflow Engine enacts Workflow Description

• Monitoring
– Events reflecting from workflow and services
execution

• Refinement

From:

Aleksander Slominski

Workflow refinement and execution (Ewa Deelman)

Workflow Representation

• Abstract (“design time”) workflow

– Task graph encoding data flow or control flow
dependencies

– “Scientific” reproducability

• “Concrete” (run time) workflow

– Service bindings to an abstract workflow graph

– “Engineering” reproducability

• Sharing of graph structures, rather than just
services

– Limited case: “composite services”

Workflow System Architecture

Composition and Modelling/Analysis

Enactment/Mapping

Execution

Workflow System Architecture

Composition and Modelling/Analysis

Enactment/Mapping

Execution

Information
Service

Planning
Engine

Data
Migration

Checkpointing

User
Interaction

Scheduling

User
Services

Workflow Taxonomy

Workflow design
And specification

Component/Service
Discovery

Scheduling and
Enactment

Data Management

Operational
Attributes

Workflow System

structure

Model/spec

composition

Workflow Composition

User Directed Automated

Language-based Graph-based

Markup

Functional

Logic
DAG

UML

Petri Net

Process
Calculi

Process
Calculi

Composition

User defined

scripting

Planner

Templates

Design
Patterns

Sub-workflows

Factory

Textual: BPEL, SCUFL (Taverna), DAGMan, DAX
Graphical: Taverna, Triana, Kepler, SciRun, VisTrails
Planner/Semantics: Wings/Pegasus, IXI,
Taverna/FETA

UML: Askalon
(UML Activity Dia.)

Petri nets
• Petri nets (informally)

– Directed cyclic graph

– 2 types of nodes: places and
transitions

– Arcs: place-transition,
transition-place

– Tokens: move on the graph,
enable/fire transitions

Fired;
and now disabled

Enabled;
can be fired

• Reference nets

– Tokens can be nets

– Nested structures: Parent and child nets

– Dynamic creation of tokens

– Synchronous channels

Parent net

Child net

Petri Nets
(from van der Aalst und Kumar, 2000)

Task

Sequence

Choice

Petri Nets
Condition

Petri Nets
Parallel execution with synchronization

Petri Nets
Parallel execution without synchronization

Petri Nets
Wait any with time out

Process Markup Languages (http://www.ebpml.org/status.htm)

Process Descriptions

YAWL notation

Composite task Multiple Instance task

Abstract vs. Executable
• abstract processes

- public behaviour
– define “business protocols”
– hide things that do not affect partner

• constrain only the message exchange
• what the possible replies are, not why one is chosen

• executable processes
– private behaviour
– fully define behaviour
– portable between compliant
environments

• WS-Choreography
– Defines abstract behaviour •BPEL_A hides parts that exist in BPEL_B

From: Peter Furniss, Choreology

process

BPEL Concept: Basic Activities

receive reply

invokeInvoke a one-way or
request-response operation

Do a blocking wait for a
matching message to arrive /
send a message in reply

validate

assignUpdate the values of
variables or partner links
with new data

Validate XML data stored
in variables

throw

rethrow

Generate a fault from inside
the business process

Forward a fault from inside
a fault handler

exit
Immediately terminate

execution of a business
process instance

compensate

compensateScope

Invoke compensation on
all completed child scopes

in default order

Invoke compensation on
one completed child scope

wait
Wait for a given time

period or until a certain
time has passed

empty No-op instruction for
a business process

extensionActivity
Wrapper for language

extensions

From: Michael Illiger and Simon Moser

process

flowContained activities are
executed in parallel,
partially ordered through
control links

sequenceContained activities are
performed sequentially in
lexical order

whileContained activity is
repeated while a predicate
holds

repeatUntilContained activity is
repeated until a predicate
holds

pick Block and wait for a
suitable message to arrive

(or time out)

forEach Contained activity is
performed sequentially or
in parallel, controlled by a
specified counter variable

if-elseif-else Select exactly one branch
of activity from a set of

choices

scope Associate contained activity
with its own local variables,

partner links, etc.,
and handlers

BPEL Concept: Structured Activities

2. N.1. …

B C

A

c

c

c1 c2
…

2. N.1. …

… AM2M1

From: Michael Illiger and Simon Moser

activities

• structured activities – can contain other activities

<sequence> one after the other
<flow> in parallel
<pick> choose by inbound message
<switch> choose by expression evaluation
<while> iteration
<scope> nest, with declarations and handlers, synchronize

• communication
<invoke> send msg to partner; possibly receive response
<receive> accept msg from partner
<reply> send msg to partner as response to <receive>

• other
<assign> manipulate variables
<wait> for duration / until time
<terminate> end the process
<compensate> run compensation handler of inner scope
<throw> exit with fault to outer scope
<empty> do nothing

From: Peter Furniss, Choreology

BPEL Activity

From:
http://www.ebpml.org/bpel4ws.htm

“Legacy” Code Handling

Pre-existing codes, mostly in Fortran

h Generally domain-specific

h Hard to re-use in other applications

h They are still useful

h They are often large, complex monoliths with
little structure.

h Support Re-use
h Support Remote Execution
h Support Remote Discovery
h Support Remote Data Input/Output

Re-write? -
try convincing
App Scientists

• Wrapping executables - “As-Is” Approach

– No source available (or provided)

– Maintain execution environment

• Wrapping Source - “Source-Update” Approach

– Some source provided (generally I/O)

– Executable can relinquish some control

– Data type conversions

• Source split Wrapping - “Unit-Mapping” Approach

– Split source into units -- wrap units

– Maintain unit execution environment + overall
manager

• Application Supported Wrapping - “App-Wrap”

– Steering support

– Data management support

Similar name in DBs,
but different approach

Wrapping Approaches

• Wrapping executables - “As-Is” Approach

– No source available (or provided)

– Maintain execution environment

• Wrapping Source - “Source-Update” Approach

– Some source provided (generally I/O)

– Executable can relinquish some control

– Data type conversions

• Source split Wrapping - “Unit-Mapping” Approach

– Split source into units -- wrap units

– Maintain unit execution environment + overall manager

• Application Supported Wrapping - “App-Wrap”

– Steering support

– Data management support

Similar name in DBs,
but different approach

•Provide Isolation between existing code, in its present
form, and need to re-use and execute code remotely

•Enable properties of code to be specified (in terms,
perhaps of its interface), to enable a discovery
mechanism to utilise in, say, a particular application.

•Sustain performance, correctness of results, ownership,
and availability

Wrapping Approaches

Automating Wrapping

• Time consuming and error prone process

• Automate the implementation of interfaces
to access code

– via a system wide data model

• Automate interactions between wrapped
components

– via a discovery service

– Registry/Lookup service

• Can have

– same interface, different implementation

Component Model and Extensions

Existing
Code

Existing
Code

Component Model and Extensions

Data Type
Translation

Existing
Code

<pse-def>
<preface>
<name alt="MD1" id="MD01"> MDComponent</name>
<pse-type> Molecular Dynamics </pse-type>
<component-directory>/home/scmlm1/wgen/Component</component-directory>
<legacy-code>/home/scmlm1/md/moldyn</legacy-code>
<ORB-Compiler>idl2java</ORB-Compiler>
<processors>8</processors>
<host-name>sapphire.cs.cf.ac.uk</host-name>

</preface>
<outports>

<outportnum> 6 </outportnum>
<outport id="1"> int </outport>
<outport id="2"> float </outport>
<outport id="3"> float </outport>
<outport id="4"> float </outport>
<outport id="5"> float </outport>
<outport id="6"> float </outport>
<href

name="file:/home/scmlm1/wgen/Component/output.da
ta" value="output" />

</outports>
</ports>

XML Data Model

Component Model and Extensions

Component Model and Extensions

Existing
Code

External Control
Input (for Steering)

Adding additional
control inputs

Existing
Code

Runtime support

Data Manager

Component Model and Extensions

Adding “container”
services

Existing
Code

Runtime support

Data Manager

Execution Rules

Component Model and Extensions

Adding an
execution policy

Control Flow vs. Data Flow

• Control Flow

– Managed via use of specialist control constructs
(conditions – may be simple
conjunction/disjunction, or more complex
operators)

– Unit/component execution managed through these
control constructs

– Types

• Transition only

• Switch, flow, while, etc

• Data Flow

– Execution managed via transmission of data

Data/Control-Flow Spectrum

• Data (tokens) flow
– (almost) no other side effects
– WYSIWYG (usually)

• References flow
– token reference type may be “http-get”, “ftp-get”
– generic handling still possible

• Application specific tokens flow
– e.g. current Nimrod job management in Resurgence
– “invisible contract” between components
– Director (Kepler) is unaware of what’s going on

• Specific messages passing protocols (e.g., CSP, MPI)
– for systems of tightly coupled components

“clean” data(=ctl)-flow special tokens flow message passing, control flow

Dealing with Loops and Conditionals

• Often difficult to achieve – often ignored

• Conditional

– Specified as control-blocks

– Implemented through the use of scripts

• Loops

– Specified as “meta-blocks” – blocks implemented
over sub-workflows

– Implemented through the use of scripts

• Must be supported in the Enactment Engine

• YAWL � defines the concept of “worklets” – sub-
workflows over which control constructs can be
applied

Loops … 2

In Triana and Kepler – use of specialist “Loop” components
• Components can be explicit
• Implemented as “hidden” command

KEPLER

Triana

Loops … 3

Init()
Iteration()
isExitLoop(Object[] data)
(Allows for user defined objects to
specify loop exit condition)

Control-flow Patterns

• Multiple Instances (MI) Patterns
delineate situations with multiple
threads of execution in a workflow
which relate to the same activity.

• State-based Patterns
reflect situations which are most
easily modelled in WF languages
with an explicit notion of state.

• Cancellation Patterns
categorise the various cancellation
scenarios that may be relevant for
a workflow specification.

• Trigger Patterns
catalogue the different triggering
mechanisms appearing in a process
context.

• Basic Control-flow Patterns
capture elementary aspects of
control-flow (similar to the
concepts provided by the
WFMC).

• Advanced Branching and
Synchronization Patterns
describe more complex
branching and synchronization
scenarios.

• Iteration Patterns
describe various ways in which
iteration may be specified.

• Termination Patterns
address the issue of when the
execution of a workflow is
considered to be finished.

Data Pattern Categories
� Data Visibility: The extent and manner in which data elements

can be viewed and utilised by workflow components.

� Internal Data Interaction: Data communication between active
elements within a workflow.

� External Data Interaction: Data communication between active
elements within a workflow and the external operating
environment.

� Data Transfer: Data element transfer across the interface of a
workflow component.

� Data Routing: The manner in which data elements can influence
the operation of the workflow.

©
Y

A
W

L
F

ou
nd

at
io

n

Workflow Resource Patterns

• Focus on the manner in which work is offered to, allocated to
and managed by workflow participants

• Consider both the system and resource perspectives

• Assume the existence of a process model and related
organisational model

• Take into account differing workflow paradigms:

– richness of process model (esp. allocation directives)

– autonomy of resources

– alternate routing mechanisms

– work management facilities

The Workflow Patterns Framework

E
v
a
l
u
a
t
I
o
n
s

Control-flow P:s 20

2000 2003

XPDL, BPEL4WS, BPML,
WSFL, XLANG, WSCI,
UML AD 1.4 UML AD 2.0, BPMN

COSA
FLOWer
Eastman
Meteor
Mobile
I-Flow
Staffware
InConcert

Domino Workflow
Visual Workflow
Forte Conductor
MQSeries/Workflow
SAR R/3 Workflow
Verve Workflow
Changengine

Jun 2005

Resource P:s - 43

BPEL4WS
UML AD 2.0
BPMN

Staffware
WebSphere MQ
FLOWer
COSA
iPlanet
jBPM
OpenWFE
Enhydra Shark

XPDL, BPEL4WS
UML AD 2.0, BPMN

Staffware
MQSeries
FLOWer
COSA
jBPM
OpenWFE
Enhydra Shark

Data P:s - 40

Oct 2005

Exception

Staffware
WebSphere
FLOWer
COSA
iPlanet

XPDL 2.0,
BPEL4WS 1.1, BPMN

time

L a n g u a g e D e v e l o p m e n t: YAWL/newYAWL

1 2 3 1 2 3

1 Sequence + + + 11 Implicit Termination + + +
2 Parallel Split + + + 43 Explicit Termination + + -
3 Synchronisation + + +
4 Exclusive Choice + + + 12 MI without Synchronisation + + +
5 Simple Merge + + + 13 MI with a priory Design Time Knlg + + +

14 MI with a priory Runtime Knlg + + -
6 Multiple Choice + + + 15 MI without a priory Runtime Knlg - - -
7 Str. Synchronising Merge +/- - + 27 Complete MI Activity - - -
8 Multiple Merge + + - 34 Static Partial Join for MI +/- - -
9 Discriminator +/- + - 35 Cancelling Partial Join for MI +/- - -

28 Blocking Discriminator +/- +/- - 36 Dynamic Partial Join for MI - - -
29 Cancelling Discriminator + + -
30 Structured Partial Join +/- +/- - 16 Deferred Choice + + +
31 Blocking Partial Join +/- +/- - 39 Critical Section - - +
32 Cancelling Partial Join +/- + - 17 Interleaved Parallel Routing +/- - +/-
33 Generalised AND-Join + - - 40 Interleaved Routing +/- - +
37 Acyclic Synchronizing Merge - +/- + 18 Milestone - - -
38 General Synchronizing Merge - - -
41 Thread Merge + + +/- 19 Cancel Activity + + +
42 Thread Split + + +/- 20 Cancel Case + + +

25 Cancel Region +/- + -
10 Arbitrary Cycles + + - 26 Cancel MI Activity + + -
21 Structured Loop + + +
22 Recursion - - - 23 Transient Trigger - + -

24 Persistent Trigger + + +

Advanced Synchronisation

Iteration

Termination

Multiple Instances

State-based

Cancellation

Basic Control-flow

Trigger

1 – BPMN
2 – UML AD
3 – BPELControl-Flow Perspective: Evaluation

Data Perspective: Evaluation

1 2 3 1 2 3

1 Task Data + +/- +/- 21 Env. to Case - Push-Oriented - - -
2 Block Data + + - 22 Case to Env. - Pull-Oriented - - -
3 Scope Data - - + 23 Workflow to Env. - Push-Oriented - - -
4 MI Data +/- + - 24 Env. to Workflow - Pull-Oriented - - -
5 Case Data + - + 25 Env. to Workflow - Push-Oriented - - -
6 Folder Data - - - 26 Workflow to Env. - Pull-Oriented - - -
7 Workflow Data - + -
8 Environment Data - - + 27 by Value - Incoming + - +

28 by Value - Outgoing + - +
9 between Tasks + + + 29 Copy In/Copy Out +/- - -

10 Task to Sub-workflow Decomp. + + - 30 by Reference - Unlocked - - +
11 Sub-workflow Decomp. to Task + + - 31 by Reference - Locked + + +/-
12 to MI Task - + - 32 Data Transformation - Input +/- + -
13 from MI Task - + - 33 Data Transformation - Output +/- + -
14 Case to Case - - +/-

34 Task Precondition Data Exist. + + +/-
15 Task to Env - Push-Oriented + - + 35 Task Precondition Data Value - + +
16 Env. to Task - Pull-Oriented + - + 36 Task Postcondition Data Exist. + + -
17 Env. to Task - Push-Oriented + - +/- 37 Task Postcondition Data Value - + -
18 Task to Env - Pull-Oriented + - +/- 38 Event-based Task Trigger + + +
19 Case to Env. - Push-Oriented - - - 39 Data-based Task Trigger + - +/-
20 Env. to Case - Pull-Oriented - - - 40 Data-based Routing + + +

Data Visibility

Data Interaction (Internal)

Data Interaction (External)

Data Interaction (External), cont.

Data Transfer

Data-based Routing

1 – BPMN
2 – UML AD
3 – BPEL

Resource Patterns Classes

• Creation patterns: design-time work allocation directives

• Push patterns: workflow system proactively distributes work items

• Pull patterns: resources proactively identify and commit to work items

• Detour patterns: re-routing of work items

• Auto-start patterns: automated commencement

• Visibility patterns: observability of workflow activities

• Multiple resource patterns: work allocation involving multiple participants or
resources

Click here for a FLASH animation of Delegation Pattern

リソースパターン分類

生成パターン：設計時でのリソース割り当て

プッシュパターン：ワークフローシステムが積極的に作業を提供

プルパターン：リソース（人など）が積極的に作業をコミットする

回り道パターン：作業の流れを変える

自動スタートパターン：自動開始のパターン

可視化パターン：作業の監視性

複数リソースパターン：複数リソースにまたがる作業の割り当て

Resource perspective: Evaluation
1 – BPMN,
2 – UML AD,
3 – Oracle BPEL PM

(from [Mulyar 2005])
1 2 3 1 2 3

1 Direct Allocation + + + 24 System-Determ. Work Queue Cont. - - -
2 Role-Based Allocation + + + 25 Resource-Determ. Work Queue Cont. - - +
3 Deferredc Allocation - - + 26 Selection Autonomy - - +
4 Authorization - - -
5 Separation of Duties - - - 27 Delegation - - +
6 Case Handling - - + 28 Escalation - - +
7 Retain Familiar - - + 29 Deallocation - - +
8 Capacity-based Allocation - - + 30 Stateful Reallocation - - +
9 History-based Allocation - - +/- 31 Stateless Reallocation - - -

10 Organizational Allocation - - +/- 32 Suspension/Resumption - - +
11 Automatic Execution + + + 33 Skip - - +

34 Redo - - -
12 Distritubtion by Offer-Single Resource - - + 35 Pre-do - - -
13 Distritubtion by Offer-Multiple Resources - - +
14 Distritubtion by Allocation-Single Resource + + + 36 Commencement on Creation + + -
15 Random Allocation - - +/- 37 Commencement on Allocation - - -
16 Round Robin Allocation - - +/- 38 Piled Execution - - -
17 Shortest Queue - - +/- 39 Chained Execution + + -
18 Early Distribution - - -
19 Distribution on Enablement + + + 40 Config. Unallocated WI Visibility - - -
20 Lata Distribution - - - 41 Config. Allocated WI Visibility - - -

21 Resource-Init. Allocation - - - 42 Simultaneous Execution + + +
22 Resource-Init. Exec. - Allocated WI - - + 43 Additional Resources - - +
23 Resource-Init. Exec. - Offered WI - - +

Creation Patterns

Push Patterns

Pull Patterns

Pull Patterns (cont.)

Auto-start Patterns

Visibility Patterns

Multiple Resource Patterns

Detour Patterns

Enactment Engines
• Employ a variety of techniques for enactment

• Integrated with a Portal – others based on a command line
interface (some also provide a scripting language)

• Generally for constructing graphs – others also support
execution of components within a graph

• Support for third-party services

– Monitoring, Registry, etc

• Can take workflow as input, process this, and return another
workflow (equivalent to treating workflow graphs as data)

Enactment Strategies … I

• Centralised Enactor
– Single graph coordinated through a centralised
enactor

– The enactor manages execution of components in
some sequence

• Distributed Enactors
– Graph divided into sub-graphs and handed to
different enactors

– Each enactor responsible for executing local graph
– Divide graph across enactors

• Undertaken by a user
• Undertaken automatically using rules (more
later)

Enactment Strategies … II

• Event-based

– Each component on completion generates an event

– Use of publish-subscribe mechanism

– Each component also activated through the
generation of an event

– Can have multiple event types

• Blackboard/Shared memory

– Component/Enactor writes to a shared space

– Monitored by components/enactor

– Blocks on availability of particular data items in
shared space

.NET Services – Windows Workflow Foundation

• Hosting of Workflow:

– Own Host

– “Dublin”

– .NET workflow Services

• Hosting supported in a Microsoft
Cloud (via Microsoft Azure)

• Supports multiple instances of a
workflow instance (for fault
tolerance) – through a multicast
Service Bus

Host Process

Windows
Workflow Foundation

Runtime Engine

A Workflow

An Activity

Runtime Services

Base Activity Library

Custom Activity Library

Visual Designer

XOML

Activities in Microsoft Workflows

• Out-of-Box WF Activities

– IfElse, Sequence, Suspend, Terminate, While

• .NET Workflow Service Activities (for Azure)

– Delay, HTTPSend, HTTPReceive, ServiceBusSend
(for Events), XPathRead, XPathUpdate (content-
based routing)

• Execution supported through a .NET execution engine

– Workflow status (terminated, suspended, running,
etc)

– Can use portal to change workflow definition

Trident & NEPTUNE (Roger Barga, Microsoft)

• Trident: Scientific workflow tools using Microsoft
Workflow Foundation

• Distributed registry service for sensor +
simulation/model data

• Trident enables:
– Automate tedious data cleaning and analysis pipelines.

– Explore and visualize data, regardless of source.

– Compose, run and catalog experiments, save results.

– Explore and visualize ocean & model data.

• Also, utilize collaboration facility in MSW

– through the use of .NET Services portal

Trident & NEPTUNE (Roger Barga, Microsoft)

Populate Windows WF with custom activities

– Introduce gridded data structures;

– Define basic operators (data transformations);

– Implemented as custom activities;

Introduce parameterized activities

– Easier for users to design workflows

– Tool to convert custom to parameterized
activities

Invoke and author workflows via web browser

Persistent workflows, checkpoints (stop-revise-rerun)

Yahoo! Pipes

• Exports data to RSS, XML and JSON (data
aggregation)

• Mainly provides support for aggregating and
manipulating RSS feeds
– Feeds can come from Google Base,
Flickr, Yahoo! Local, CSV files etc.

• Provides a variety of functions for this
• Allows

– Translation between feeds
– Aggregation of feeds
– Integration with map

• Focus primarily on a data
driven approach

www.jopera.org

From: Cesare Pautasso

JOpera Example: Doodle Map Mashup

• Setup a Doodle with Yahoo! Local search and
visualize the results of the poll on Google Maps

From: Cesare Pautasso

ActiveSheets/EnFuzion
• Extend MS-Excel to support execution of functions

– Excel � Nimrod Cache � Nimrod-based execution

– Use OLE extensions (VB + ActiveX DLL)

• Support for parallel evaluation of cells within a spreadsheet

– Results of one cell may feed as input into another

• Use of custom functions (rather than built in ones in Excel) –
evaluate cells in a data flow manner

– Cells must be “functionally” independent

• Table used to maintain current state:

– not evaluated, under evaluation, evaluated

• Custom function returns “before”

evaluation completes – causing other

functions to be evaluated in parallel

Enactment for Automated Composition (more later)

• Enactment engine enlists use of other components

– Discovery Service

– Planning Engine

• Enactment may be “goal-oriented”

– Define requirement, rather than components

– Conflict detection support

– Mechanisms to chose between alternatives
(constraints)

Difficult to do in practice

http://www.trianacode.org/
http://www.gridlab.org/

GridLab Implementation

GAT

GAP Interface

Gridlab ServicesJXTAServe P2PS WSPeer

JXTA Sockets Web Services OGSA + Services

http://www.trianacode.org/

Grid Application
Toolkit

Jxtaserve GSI Enabled NS-2 And more..

Java GAT Prototype

Jxta

GridLab GAT (www.gridlab.org)

• Advertising
• Discovery
• Communication

GAP (Java Prototype)

Web
Services

P2PS

Job Submission
(GRMS)

• Generic Job
Submission
• Virtual
filename data
accessData

Management

• Set of generic Java interfaces
• high level abstractions to Grid
services
• Factory design – dynamic pluggable
services

OGSA

Triana Architecture

Triana TaskGraph
Writer

Triana Command
Writer

XML
Writer

Other
Writer

TCom
Writer

Other
Writer

Triana TaskGraph
Reader

Triana Command
Reader

XML
Reader

WSFL
Reader

TCom
Reader

Other
Reader

Interactive Interactive/Offline Communication Channels

Triana
Engine

Command
Service
Control

Application’s Insert Points

Plug-in Applications
- flexible: apps can use Triana
in various ways, as a:

- GUI
- remote control GUI
- or in full inc. GAP/GAT

3rd Party Application

3rd Party
Application

Triana Distributed Workflow

Network

Action
Commands

Workflow,
e.g. BPEL4WS

Triana
Engine

Triana Controlling
Service (TCS)

Triana
Service &
Engine

Triana
Service &
Engine

Triana
Service &
Engine

Other
Engine

Distributed Triana
Workflow
- flexible distribution:
based around Triana
Groups
- HPC and Pipelined
distribution

Triana
Gateway

Distributing Triana Taskgraphs

• Mapping tasks or groups of tasks to resources

• Two stages:
– Taskgraph annotation, XML definition for each task or

group of tasks

– extended to specify resources and message channels

– Data distribution, annotated sub-sections of taskgraph
passed to resources

Custom Distribution

• Distribution units are standard Triana
tools, enabling users to create their
own custom distributions

Distribution
Unit

Wave Grapher

Gaussian
FFT

Gaussian
FFT

Remote
Services

Local
Triana

• The workflow is cloned/split/rewired to achieve
the required distribution topology

• Custom
distribution units
allow sub-
workflows to be
distributed in
parallel or
pipelined

Remote Deployment

• User can distribute any task or
group of tasks (sub-workflow)

• Using the GAP Interface, Triana
automatically launches a remote
service providing that sub-
workflow.

• Input, Output and Control Pipes
are connected using the current
GAP binding (e.g. JXTA Pipes)

Deploying and Connecting To Remote Services

• Running services are automatically
discovered via the GAP Interface,
and appear in the tool tree

• User can drag remote services
onto the workspace and connect
cables to them like standard tools
(except the cables represent
actual JXTA/P2PS pipes)

Remote
Services

Web Service Discovery 1

• Triana allows users to query
UDDI repositories

• Alternatively, users can
import services directly from
WSDL

Web Service Discovery 2

• Discovered/Imported Web
Services are converted into
Triana tools
(service name = tool name)

(input message parts = in nodes)

(output message parts = out nodes)

etc…

• Web Service tools are
displayed in the user’s Tool
Tree (alongside local tools)

Connecting Workflows
• Web Service tools can be dropped onto the user’s workspace and

connected like local tools

• A workflow can contain both local and Web Service tools

Complex Data Types

• Users can build their own interface for creating/mediating
between complex types

• Alternatively, Triana can dynamically generate an interface from
the WSDL2Java generated bean class

GEMSS: Maxillo-facial
Surgery Simulation

GEO 600 Inspiral Search

• Background
– Compact binary stars orbiting each other in a close orbit

• among the most powerful sources of gravitational waves
– As the orbital radius decreases a characteristic chirp

waveform is produced - amplitude and frequency increase with
time until eventually the two bodies merge together

• Computing
– Need 10 Gigaflops to keep up with real time data (modest

search..)
• Data 8kHz in 24-bit resolution (stored in 4 bytes) -> Signal
contained within 1 kHz = 2000 samples/second

• divided into chunks of 15 minutes in duration (i.e. 900
seconds) = 8MB

• Algorithm
– Data is transmitted to a node
– Node initialises i.e. generates its templates (around 10000)
– fast correlates its templates with data

Coalescing Binary Search

Triana PrototypeGEO 600 Coalescing Binary Search

Coalescing Binary Scenario

Gridlab
Test-bed

GW
Data

Distributed
Storage

Logical
File Name

CB Search

Controller

GAT (GRMS, Adaptive)

GW
Data

GAT (Data Management)

• Submit Job
• Optimised Mapping

Email, SMS notification

The KEPLER/Ptolemy II GUI (Vergil)

“Directors” define the
component interaction
& execution semantics

Large, polymorphic component
(“Actors”) and Directors
libraries (drag & drop)

Actor-Oriented Design

• Object orientation:

class name

data

methods

call return

What flows through
an object is

sequential control
(cf. CCA, MPI)

• Actor/Dataflow orientation:

actor name

data (state)

ports
Input data

parameters

Output data

What flows through
an object is a stream

of data tokens
(in SWFs/KEPLER
also references!!)

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

Object-Oriented vs.
Actor-Oriented Interfaces

Actor/Dataflow
Oriented

AO interface definition says “Give me
text and I’ll give you speech”

OO interface gives procedures that have to
be invoked in an order not specified as
part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

Object Oriented

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

Ptolemy II: Actor-Oriented Modeling

• “Director” acts as an enactor

– In this instance, interaction semantics are not
maintained within a component

– This is equivalent to having a centralised enactor

• Different directors for different modeling and execution
needs

– Hence, a variety of directors can operate on the same
components

�Better abstraction, modeling, component reuse, …

Behavioral Polymorphism in Ptolemy

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods implement the
communication semantics of a domain in
Ptolemy II. The receiver instance used in
communication is supplied by the director,
not by the component.
(cf. CCA, WS-??, [G]BPL4??, … !)

producer
actor

consumer
actor

IOPort

Receiver

Director

Behavioral polymorphism is the idea
that components can be defined to
operate with multiple models of
computation and multiple middleware
frameworks.

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

Component Composition & Interaction

• Components linked via ports
• Dataflow (and msg/ctl-flow)
• Where is the component interaction semantics

defined??
– each component is its own director!

• But still useful for special applications, e.g.
parallel programs (MPI, …)

Source: GRIST/SC4DEVO workshop, July 2004, CaltechSource: GRIST/SC4DEVO workshop, July 2004, Caltech

DIR1
DIR2

DIR3

DIR4

???

Domains and Directors: Semantics for
Component Interaction

• CI – Push/pull component interaction
• CSP – concurrent threads with rendezvous
• CT – continuous-time modeling
• DE – discrete-event systems
• DDE – distributed discrete events
• FSM – finite state machines
• DT – discrete time (cycle driven)
• Giotto – synchronous periodic
• GR – 2-D and 3-D graphics

• PN – process networks
• SDF – synchronous dataflow
• SR – synchronous/reactive
• TM – timed multitasking

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

For (coarse grained)
Scientific Workflows!

For (finer-grained)
concurrent jobs!?

Polymorphic Actor Components Working Across
Data Types and Domains

• Actor Data Polymorphism:
– Add numbers (int, float, double, Complex)
– Add strings (concatenation)
– Add complex types (arrays, records, matrices)
– Add user-defined types

• Actor Behavioral Polymorphism:
– In dataflow, add when all connected inputs have data
– In a time-triggered model, add when the clock ticks
– In discrete-event, add when any connected input has

data, and add in zero time
– In process networks, execute an infinite loop in a thread

that blocks when reading empty inputs
– In CSP, execute an infinite loop that performs

rendezvous on input or output
– In push/pull, ports are push or pull (declared or inferred)

and behave accordingly
– In real-time CORBA, priorities are associated with ports

and a dispatcher determines when to add

By not choosing
among these
when defining the
component, we
get a huge
increment in
component re-
usability. But how
do we ensure that
the component
will work in all
these
circumstances?

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

Directors and Combining Different Component
Interaction Semantics

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/

Possible app. in SWF:
• time-series aware …
• parameter-sweep aware …
• XY aware …
… execution models

Web Services � Actors
(WS Harvester)

1
2

3

4

� “Minute-made” (MM) WS-based application integration

• Similarly: MM workflow design & sharing w/o implemented components

KEPLER: Actors

FAEHIM
• Use of Web Services composition – with

distributed services
– Wrap third party services (Mathematica,
GNUPlot)

– WEKA Service template
– Triana Workflow

• Services provided by third parties
– WSDL interfaces (avoid use of specialist
languages – unless really necessary)

– SOAP-based message exchange
• Use of attachments

• Access to local and remote data sets
– Support for data streaming

• Wrapping of existing algorithms (important
requirement)

http://users.cs.cf.ac.uk/Ali.Shaikhali/faehim/

FAEHIM Architecture

Demo 1

Demo 2

Inside the FAEHIM Toolbox

Deals with Dataset files
e.g. load datasets,

converts dataset formats

Deals with data that need manipulation

Visualize data

Usage Overview

W
eka

A
lgorithm

C
lassify

Dataset

C
lassifyR

URL

Classifier
• J48 Classifier

Class for generating an (un)pruned C4.5 decision tree. For
more information, see Ross Quinlan (1993). C4.5: Programs
for Machine Learning, Morgan Kaufmann Publishers, San
Mateo, CA.

• Operations
classify()
Input: DataHandler dataset, String attributeName
output: DataHandler decisionTree

• classifyRemoteDataset()
Input: String url, String attributeName
output: DataHandler decisionTree

Clustering Support
Cobweb Web Service

Operations

cluster()
Input: DataHandler dataset
output: String result

clusterRemoteInstance()
Input: String datasetURL
output: String result

clusterByPercentage()
Input: DataHandler dataset, int percentage
output: String result

Graph Plotting Service
Plotting Web Service

Operations

plot3D()
Input: DataHandler data, String
plotType
output: DataHandler graph

getPlotTypes()
Input: null
output: String plotTypes

Registry Usage

UDDI

Registry of Algorithms

Algorithm 1

Algorithm 2

Web Service

Execution
Resource

1. Discover
2. Select
3. Invoke

Algorithm 1

Parallel Execution

UDDI

Registry of Algorithms

Algorithm 1

Algorithm 2

Execution
Resource

1. Discover
2. Select
3. Invoke

Algorithm 1

Execution
Resource

Execution
Resource

Execution
Resource

Algorithm 1Algorithm 1Algorithm 1Algorithm 1

Resource
Allocation
Manager

Workflow Optimisation

• Types of workflow optimisation
– Through service selection
– Through workflow re-ordering
– Through exploitation of parallelism

• When is optimisation performed?
– At design time (early binding)
– Upon submission (intermediate
binding)

– At runtime (late binding)

Workflow Partitioning (Pegasus)

Full Graph vs Partial Graph Scheduling

Schedule
• Total workflow Graph
• Sub-graph
• Each node

Service Binding Models

• Late binding of abstract service to
concrete service instance means:

–We use up-to-date information to
decide which service to use when
there are multiple semantically
equivalent services

–We are less likely to try to use a
service that is unavailable.

Late Binding Case

• Search registry for all services that
are consistent with abstract service
description.

• Select optimal service based on current
information, e.g, host load, etc.

• Execute this service.
• Doesn’t take into account time to
transfer inputs to the service.

• In early and late binding cases we can
optimise overall workflow.

WOSE Architecture

Proxy

Configuration
script

Workflow
script

User

Converter ActiveBPEL
workflow engine

Web service
instance

Discovery
Service

Optimization
Service

Registry services
(such as UDDI)

Work at Cardiff has
focused on
implementing a late
binding model for
dynamic service
discovery, based on a
generic service
proxy, and service
discovery and
optimisation services.

Service Discovery Issues
• Service discovery and optimisation is based on service

metadata.

• Could store in a database.

• Could obtain by interrogating service.

Use of Registry Services

KNOOGLE

Broker Configuration

Taverna Configuration

Optimisation by Re-Ordering

– Optimise the runtime execution of workflow
before it is executed

– Achieves the goal through:

• Re-ordering of components

• Addition of components

• Substitution of components

• Pruning of the workflow

• Performance and workflow aware Scheduling

• Runtime Optimisation

– through monitoring, check-pointing and
migration

Component Manipulation

• Re-ordering: Workflows (often composed from
composite workflows) may contain non-optimal ordering
of components

– Use re-ordering to improve performance

multiply
Matrix
Gen

Vector
Gen

Matrix
Gen

multiply

multiply

Matrix
Gen

Vector
Gen

Matrix
Gen

multiply

Pruning

• Workflow Pruning:

– Workflows may contain unused components.
Especially when composed from other
sub-workflows

• Remove redundant components

Not needed

a b

f
c

e
g

d

h
Not needed� �

Performance Aware Scheduling

Scheduler

Globus
Resources

Globus
Resources

Globus
Launcher

Single
Resource
Launcher

Component
Repository

JSDL

Query

Request Reservation

Performance
Repository

SGE
Resources

SGE
Resources

Reservation
Launcher

Reservation
Service

Query

Negotiate
Reservation
WS-Agreement

Execution Pipeline

JSDL for different
VMs of

components

Optimised
WorkflowAbstract Workflow

Concrete Workflow

GRID

Scheduler
Performance
Aware

Deployment
Service (DS)

Application
Co-ordination
Service (ACS)

Static
Optimiser

OS

VM

Hardware

Service

OS

VM

Hardware

Service

Workflow Patterns

• Identify and reuse common “idioms”
in some scientific domain and across
different scientific domains.

• An “idiom” captures common
knowledge and experience and
describe how a similar set of
experiments are to be set-up and
managed.

From: Cecilia Gomes

Usage

1. To allow computational scientists and
developers to capture design patterns that
express common usage of software
infrastructure within scientific domains

2. To provide a software engineering tool that
supports:
• application configuration,
• execution control, and
• reconfiguration of software services

From: Cecilia Gomes

Approach

• Patterns are divided in two categories for
flexibility:
– Co-ordination (Behavioural) patterns

• Capture interactions between software
sub-systems

– Structural patterns

• Capture connectivity between particular
types of Grid software/hardware
components

From: Cecilia Gomes

Approach

• Patterns as first class entities both at design,
execution, and reconfiguration times

• Pattern templates are manipulated through
Pattern Operators:
– Structural operators
– Behavioural operators

From: Cecilia Gomes

Structural Pattern Templates

• Encode component connectivity. Ex: Pipeline, Ring, Star,
Façade, Adapter, Proxy.

From: Cecilia Gomes

Structural Operators

• Manipulate structural patterns keeping their structural
constraints.

• Examples:

– Increase, Decrease,

– Extend, Reduce,

– Embed, Extract,

– Group,

– Rename/Reshape, …

From: Cecilia Gomes

Structural Operators

• Manipulate structural patterns keeping their
structural constraints.

• Examples:

– Increase, Decrease,

– Extend, Reduce,

– Embed, Extract,

– Group,

– Rename/Reshape, …

From: Cecilia Gomes

Increase Structural Operator

Pattern Result Pattern

Increase(Pipeline,2)

Real
Subject

Proxy

Increase(Proxy,2)
Real Subject

Proxy

Proxy
Proxy

From: Cecilia Gomes

Pattern Result Pattern

Real
Subject

Proxy

Extend(Proxy,element)

Real
Subject

Proxy Proxy

Facade
Facade

Facade

Extend(Facade,element)

Extend Structural Operator

From: Cecilia Gomes

Behavioural Pattern Templates

• Capture temporal or (data/control) flow dependencies
between components.

• Examples:
– Client/Server,
– Master/Slave,
– Streaming,
– Service Adapter,
– Service Migration,
– Broker Service
– Service Aggregator/Decomposer, …

From: Cecilia Gomes

Behavioural Operators

• Act over the temporal or flow dependencies for
execution control and reconfiguration.

• Examples:
– Start, Terminate,
– Log,
– Stop, Resume,
– Restart, Limit,
– Repeat, …

From: Cecilia Gomes

•Applications are built by connecting services
available in a toolbox
•The execution follows the dataflow model

3- Implementation over Triana – example

example

example

a second configuration

Workflow Planning/Adaptation

• Goal-oriented

• Abstract � Concrete workflow translation

– May utilise a number of different infrastructure
services (Pegasus)

• Level of automation can vary

– Find components

– Find sub-workflows

– Find infrastructure services

– Publish output data at specific locations

Planning

• Situated so actions,
percepts, time

• An enactment
process:
– Monitors
“Percepts”

– Executes one or
more “Plans”

– Leading to
“Actions”

– Leading to new
“Percepts”

Percepts

Action

Choose
an action

a ∈ As

From: Michael Winikoff, RMIT

Planning … 2
• Reactive so events
(significant
occurrence)

– Percepts lead to
internal events

– Events need to be
monitored with
reference to
“Goals”

– Goals act as filters
to decide “Actions”

Percepts

Action

Events

GoalsActions

From: Michael Winikoff, RMIT

Planning … 3
• Implementation uses
plans and beliefs
� Cache for means, and

world information
respectively

�Beliefs: contains
information about
current state of
resources

�Plans: chose a
schedule to meet
a specific deadline

Percepts

Action

Events

GoalsActions

Plans

Beliefs

From: Michael Winikoff, RMIT

GridGridGrid

Chimera is developed at ANL
By I. Foster, M. Wilde, and J. Voeckler

From: Ewa Deelman

Wings for Pegasus

Wings … 2
• Uses: workflow templates, workflow instances and executable

workflows
• Data

– File
– DataCollection (objects or files)

• Computation
– ComponentType
– ComponentCollection (hasComponentType property)

• Node
– Node in a workflow
– uses hasComponent to specify contained component

• Link
– hasDestinationNode and hasOriginNode
– hasDestinationFileDescription and hasOriginFileDescription
– Subclasses: InputLink, InOutLink, OutputLink
– Data collections carried in links with Skolem instances (stand

in for actual data to be used in the instance)

HTN Planning (Activity Composition)

A1

A2

A3

A5A4

“Initial” Plan

Refine

Introduce activities to achieve preconditions
Resolve interactions between conditions and effects

Handle constraints (e.g. world state, resource, spa tial, etc.)

“Final” Plan

A2.2A2.1

A1

A3

A5A4

Plan Library

A2 Refinement

S2S1

Augment to describe
Grid/web services

Augment to describe
Grid/web requirements

From: Austin Tate (Edinburgh)

HTN Planning:
Use of “Methods” (task decomp)
and “Operators” (task execution)

HTN Planning (Initial Plan Stated as “Goals”)

Refine

Plan Library

Ax Refinement

S2S1

P

“Initial” Plan

P & Q

Initial Plan can be any combination of Activities a nd Constraints

“Refined” Plan

A1.2A1.1

Q

P

From: Austin Tate (Edinburgh)

I-Plan
(Planning Service)

Composer & Enactor

Enactment (e.g. via IEnactment (e.g. via I--P2)P2)

EnforcementEnforcement
(e.g. via KAoS)(e.g. via KAoS)

From: Austin Tate (Edinburgh)

BDI agents (based on AgentSpeak(L))

• Chosen plan added to “intention” stack (can be
either an event (posted) or action (executed))

BDI-based Enactor
• Enactor can maintain local plan library

– update of plan library as new conditions are
detected

– Useful in a dynamic environment (Grid) -- as
agents are goal directed

• Execution of a plan leads to update of beliefs

– useful mechanism to adapt agent behaviour in a
Grid context

• Potentially useful to allow detection of plan
conflicts

• Traditional approach:

– number of tasks fixed, resources identical

– fixed number of resources, tasks pre-defined

• Delegate scheduling priorities to each resource
and task agent (no central schedulers)

Planning as Model Checking

• Planning based on:
– Non-determinism: cannot predict interactions with
external processes – i.e. cannot predict whether
answer to a request for availability will be positive
or negative

– Partial Observability: can only observe external
interactions (as BPEL) not internal status

– Extended Goals: behaviour of the “process” is
important, and not just the final goal

– Conditional Preferences: may require multiple
conditions to hold for goal to be satisfied

• Given current state, evaluate possible likely states
(may require an exhaustive checking of possibilities)

Planning as Model Checking

• Planning under uncertainty

• Support different degrees of “run-time
observability”

– domain state partially visible via sensing

• “Temporally extended planning” goals

– conditions on states that arise when a plan is
executed

– “goal” specifies conditions/constraints on
intermediate states, and not just on the final
outcome

Planning Domains

• Domain � Model of generic system
• Plan � monitors evolution of domain via “observations”

– Controls evolution of domain via “actions”
• Planning domain defined in terms of:

– States, Actions (it accepts), Observations (domain can exhibit)
– Transition function: action execution changes domain state
– Observation function: observations associated with each state

Domain

Plan actions

observations

Planning

Context: captures state

Action Execution and Beliefs

• Context: internal state of plan

– Account for knowledge gathered during previous
steps

– Actions: depend on observation and on the context

• Due to partial observability, a set of domain states
need to be considered (given initial knowledge and
current plan state)

– Executing an action “a” evolves B�B’ (contains all
possible states that can be reached through “a”
from “B”)

– If after executing “a” observation “o” still holds,
then filter out states for which “o” is not valid

Application to Web Services Composition

• First model the process undertaken within each
service involved

• Synthesise, using planning, a process that interacts
with the three processes (each service) in order to
reach a particular state

• Aim to reach some “ideal” state – defined as an
overall goal

Composed Web Service

Semantic Approaches

• Component/Services have “rich” annotations to aid
discovery

• Descriptions also contain support for composition of
components

From EU NextGRID
project

Web Services Modelling Ontology (WSMO)

• Use of Semantic Web Services to aid automated
composition

• Given a goal, identify how services could be composed
to achieve the goal

• Specifies a complete set of infrastructure that is
necessary to achieve this

• Provides three main components:

– Web Services Modelling Ontology

– Web Services Modelling Language

– Execution Environment

From: John Domingue, Open University

WSMO Working Groups

A Conceptual Model
for SWS

A Formal Language for WSMO

A Rule-based Language for SWS

Execution Environment
for WSMO

From: John Domingue, Open University

WSMO Top Level Notions

Objectives that a client wants to
achieve by using Web Services

Provide the formally
specified terminology
of the information used
by all other components

Semantic description of Web
Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components with
mediation facilities for handling
heterogeneities

From: John Domingue, Open University

WSMO Mediators Overview

From: John Domingue, Open University

Mediator Structure

WSMO Mediator

uses a Mediation Service via

Source
Component

Source
Component

Target
Component1 .. n

1

Mediation
Services

- as a Goal
- directly
- optionally incl. Mediation

From: John Domingue, Open University

DAML-S (Similar to OWL-S)

• Primarily aimed at Software Agents community

• Enable reasoning/planning about services

– With particular support for automated composition

– Integration with other information services

• Key aspect:

– Notion of a service “profile”

– Used to register service + support automated
discovery via a matchmaking infrastructure

– Use of “service advertisement”

– Specifies inputs, outputs, pre-conditions, effects
(post-conditions)

Provenance Definition

The provenance of a piece of data is the process
that led to that piece of data

• We represent the provenance of some data by
documenting the process that led to the data:
– documentation can be complete or partial;
– it can be accurate or inaccurate;
– it can present conflicting or consensual
views of the actors involved;

– it can provide operational details of
execution or it can be abstract.

From: Luc Moreau
(U Southampton)

Provenance constituents

• The provenance of a data item is composed of
several elements:

– Interaction provenance: the set of all
interactions between actors involved in the
computation of the data

– Actor provenance: the documentation
provided by a particular actor pertaining to
an interaction

– Grouping: notion that allow us to give a
scope, in terms of execution semantics and
application's needs.

Provenance Questions
• After completion of workflow:

1. Did the services I use actually fulfil my overall
application requirement?

2.Two of the analysis were performed on the same
initial data but have different results – did I alter
the services between these experiments?

3.Did I perform each service on the type of data
that the service was intended to analyse, i.e. were
the inputs and outputs of each activity compatible?

4.Did I use data sources from the same site?
5.Why did it take much longer to run the analysis in
the second instance?

Particularly significant in the context of Distributed Services

p-assertion
• A given element of process documentation referred

to as a p-assertion

– p-assertion: is an assertion that is made by
an actor and pertains to a process.

• Types

– Interaction p-assertion

• relates to content of received/sent message

– Actor p-assertion

• Relationships between actors

• State of an actor

From: Luc Moreau
(U Southampton)

Provenance
Store

Client
(actor 1)

Service A
(actor 2)

Service B
(actor 3) Results

Record Documentation of
Execution

Application

Get results

Validate workflow execution using
provenance tools

Provenance architecture

User

p-assertion

• A given element of process documentation
referred to as a p-assertion

– p-assertion: is an assertion that is
made by an actor and pertains to a
process.

• Types

– Interaction p-assertion

• relates to content of received/sent
message

– Actor State p-assertion

• State of an actor

– Relationship p-assertion

• Relationships between interaction

p-assertions

From: Luc Moreau
(U Southampton)

M1

M2

M3

M4

Actor 1 Actor 2

I received M1, M4
I sent M2, M3

I received M3
I sent M4

From these p-assertions, we can derive that M3 was sent by Actor 1
and received by Actor 2 (and likewise for M4)

If actors are black boxes, these assertions are not ver y useful because
we do not know dependencies between messages

Process Documentation (1)

M1

M2

M3

M4

Actor 1 Actor 2

M2 is in reply to M1
M3 is caused by M1
M2 is caused by M4

M4 is in reply
to M3

These assertions help identify order of messages,
but not how data was computed

Process Documentation (2)

f

M1

M2

M3

M4

Actor 1 Actor 2

f1

f2

M3 = f1(M1)
M2 = f2(M1,M4) M4 = f(M3)

These assertions help identify how data is computed ,
but provide no information about non-functional
characteristics of the computation
(time, resources used, etc)

Process Documentation (3)

M1

M2

M3

M4

Actor 1 Actor 2

I used IBM cluster
Request was in
queue for 6min

I used sparc
processor

I used algorithm
x version x.y.z

Process Documentation (4)

Types of p-assertions (1)
– Interaction p-assertion: is an assertion of the
contents of a message by an actor that has sent or
received that message

I received M1, M4
I sent M2, M3

Types of p-assertions (2)

– Relationship p-assertion: is an assertion, made by an
actor, that describes how the actor obtained an
output message sent in an interaction by applying
some function to input messages from other
interactions (likewise for data)

M2 is in reply to M1
M3 is caused by M1
M2 is caused by M4

M3 = f1(M1)
M2 = f2(M1,M4)

Types of p-assertions (3)
– Actor state p-assertion: assertion made by an
actor about its internal state in the context of a
specific interaction

I used sparc
processor

I used algorithm x
version x.y.z

Actor State Capture

Service

Enactment Engine

Service

B1

B2

M1 M2

Instrumented
Output

Monitor
Output

Monitoring Sources:
Service information
derived from hosting
platform via monitoring
sources (eg Ganglia)

Instrumented Actor:
Service information
obtained from
instrumented points
within an actor.

Metrics for Actor State Assertion
• Static

– No variation in value over actor lifetime
• Per Node - Node identity, Operating system
• Per Actor - Actor identity, Name, Owner, Version

• Dynamic
– Variation in value over actor lifetime

• Per Node - Memory usage, Network traffic
• Per Actor - Execution Time, Availability

• Instrumented
– Actor is ‘Instrumented’ at Key Points in its
Execution
• Description of internal data flow

– Eg. Completion states for action events and file
transfers

The p-structure (1)

• The p-structure is a common logical structure of the
provenance store shared by all asserting and querying
actors

• Hierarchical
• Indexed by interactions (interaction= 1 message

exchange)
� Now part of the Open Provenance Model

Sender’s view
Receiver’s view

The p-structure (2)

All p-assertions
asserted by a given
actor participating
in an interaction

Asserter identity

P-Assertion schemas

Axis
Handler

Axis
Handler

Provenance Store

OGSA DAI Interface

Exist DB2

…
Backend Stores

PS Client
Side

Library

PS Client
Side

Library

Web ServiceWS Client

Query Actor WS

PS Client
Side

Library

WS Calls

Java Calls

Implementation Diagram

From: Luc Moreau
(U Southampton)

Provenance Store Components

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceStoreResource

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceStoreResource

eXist
XML

Database

OGSA-DAI

Globus GT4 Container

Globus GT4
Container

External Security Services

ProvenanceStoreFactoryFactory

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceServiceResource

ProvenanceServiceResourceHome

Uses

Uses
Manages

ProvenanceService

Destroy

Record

PQuery

XPath

XQuery

Iterate

Resources

Actor CSL

Slide from John Ibbotson (IBM)

ProvenanceStoreFactory

Provenance Store Security

Provenance GT4 Container

Policy
Decision
Point

Policy
Decision
Point

ACL
File

(XML)

Approve

Approve

Request

Deny

Deny

ProvenanceService

Destroy

Record

PQuery

XPath

XQuery

Iterate

Resources

Factory

Actor CSL

Slide from John Ibbotson

Portal – Tools Architecture

• Tool suite allow users of the tool to navigate
and visualize provenance information beyond
the capabilities provided by the Client Side
Library.

– The Visualisation Tools: these tools
provide Graphical User Interfaces (GUI)
for visualizing p-assertions that have been
submitted by an application.

Portal – Tools Architecture

– The Processing Tools: provide features accessible
through an Application Programming Interface
(API). The processing tools include the following:

• The Analysis Engine provides reasoning
capabilities over a set of passertions,

• The Comparator Tool may be used to compare p-
assertions that have been submitted by an
application,

• the Query Tool makes use of the Client Side
Library to query one or more Provenance
Store(s).

Portal – OTM Application

Portal – OTM Application

Portal – EHCR Application

Portal – DLR Application

Relationship Tool

References

• “A Taxonomy of Workflow Management Systems for
Grid Computing”, Jia Yu and Rajkumar Buyya, GRIDS
Lab, University of Melbourne

• “Examining the Challenges of Scientific Workflows”,
Y Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D.
Gannon, C. Goble, M. Livny, L. Moreau and J. Myers,
IEEE Computer, December 2007, pp 26—34

• “Putting Semantics in Grid Workflow Management:
the OWL-WS approach”, Stefano Beco, Barbara
Cantalupo, Nikolaos Matskanis, Mike Surridge, EU
NextGRID paper

• “Planning and Monitoring Web Service Composition”,
M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P.
Traverso (ITC/IRST, Italy)

References … 2

• G. Fox and D. Gennon, Special Issue “Workflow
Systems”, Concurrency and Computation: Practice and
Experience, 18(10): 1009-1019. 2006

• Ewa Deelman, Dennis Gannon, Matthew Shields and
Ian Taylor, “Workflows and e-Science: An overview of
Workflow System Features and Capabilities”, FGCS,
2008

• Y. Gil et al., “Wings for Pegasus: Creating Large-Scale
Scientific Applications Using Semantic
Representations of Computational Workflows”, 19th

IAAI Conference, Vancouver, BC, Canada, June 2007
• I. J. Taylor, E. Deelman, D. Gannon and M.
Shields (Eds), Workflows for eScience, Springer
2007

