
© 2008 Carnegie Mellon University

Migration to Service Oriented

Architecture (SOA) with

Selected Research Challenges

Dennis Smith

ICSOC 2008

December 5, 2008

2

© 2008 Carnegie Mellon University

Agenda

Introduction

Å SOA Challenges

Å Common Misconceptions

Å Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

3

© 2008 Carnegie Mellon University

What is SOA?

Service-oriented architecture is a way of designing, developing, deploying

and managing systems, in which

Å Services provide reusable business functionality.

Å Service consumers are built using functionality from available services.

Å Service interface definitions are first-class artifacts.

Å An SOA infrastructure enables discovery, composition, and invocation of

services.

Å Protocols are predominantly, but not exclusively, message-based document

exchanges.

50,000-Foot View: Basic Concepts

4

© 2008 Carnegie Mellon University

Components of a Service-Oriented System

End User

Application

Service

A

SOA Infrastructure

Enterprise

Information System

Portal

Internet

External

System

Service

B

Service

C

Service

D

Internal Users

DiscoverySecurity
Development

Tools

Legacy or New

Service Code

Internal

System

Service Consumers

Infrastructure

Service

Implementation

Service Interfaces

External

Consumer

50,000-Foot View: Basic Concepts

5

© 2008 Carnegie Mellon University

Challenges for Service Consumers

Available services might not meet functional and non-functional

requirements.

Services may change or disappear without notification.

Tools and programs provided by the infrastructure may conflict with

development environment.

Services may not be semantically correct from the consumerôs point of

view.

Services coming from different organizations can have inconsistencies

between them.

End-to-end testing would require test instances of all services to be

available.

1,000-Foot View

6

© 2008 Carnegie Mellon University

Challenges for Service Developers

If consumer requirements are not understood, services may never be

used.

The effort to translate legacy data types into data types that can be

transmitted in messages can be greater than expected.

If dealing with proprietary SOA environments, there may be

Å Constraints imposed on developed services

Å Dependencies on tools and programs provided by the infrastructure

that are in conflict with development tools

Guidance for using Service-Level Agreements (SLAs) is often not clear.

Å Benefits of SLAs are not well quantified.

1,000-Foot View

7

© 2008 Carnegie Mellon University

Challenges for Infrastructure Developers

Changes in standards and products used in the infrastructure may have a

large impact on its users.

Å Especially emerging standards

Effort for development, support, and training for the use of tools and

infrastructure may be underestimated.

1,000-Foot View

8

© 2008 Carnegie Mellon University

Web Services in the Context of Distributed
Systems

Distributed Systems

Service-Oriented

Systems

Web Services

Implemented using

Broker Architecture

Peer-to-Peer

Systems

WS*Web Services RESTful Web Services

é.

Class of System

Architecture

Pattern

Technology

Pattern

Implementation CORBA

é.

5,000-Foot View: Web Services

9

© 2008 Carnegie Mellon University

WS* Protocol Stack

The highlighted

standards are the most

commonly used.

Most WS* standards are

emerging and even

competing.

Security, QoS,

Transactions, and

Management have to be

addressed in all layers.

Discovery
UDDI

Description
WSDL

Message Format
SOAP

Encoding
XML

Transport
HTTP

S
e

c
u

rity

M
a

n
a

g
e

m
e

n
t

T
ra

n
s
a

c
tio

n
s

Q
u

a
lity

 o
f S

e
rv

ic
e

Orchestration and

Choreography
WSCL, WSCI, BPEL,

WS-Coordination

BPML, BPSS

Base

Stack

Adapted from ñXML and Web Services Unleashedò, SAMS Publishing

5,000-Foot View: WS* Web Services

10

© 2008 Carnegie Mellon University

Agenda

Introduction

Å SOA Challenges

Å Common Misconceptions

Å Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

11

© 2008 Carnegie Mellon University

SOA Provides the Complete Architecture for a
System

SOA is an architectural pattern/style/paradigm and not the

architecture of the system itself.

An architectural pattern provides guidance that embodies best practices.

Å The concrete elements and their interactions are the architecture of the

system.

Any number of systems can be developed based on an architectural

pattern.

Å An architecture based on SOA inherits both the good and the bad.

Corollary: SOA cannot be bought off-the shelf.

ÅSystem qualities have to be built into the architecture of the

system.

ÅDecisions have to be madeðservice design and

implementation, technologies, tradeoffs.

50,000-Foot View: Common Misconceptions

12

© 2008 Carnegie Mellon University

The Use of Standards Guarantees Interoperability
in an SOA environment

Interoperability needs agreement on both syntax and semantics.

Web Services enable syntactic interoperability.

Å XML Schema defines structure and data types.

Å WSDL defines the interfaces: operations, parameters and return values.

Å Available information, technologies, and tool support.

Web Services do not guarantee semantic interoperability.

Å XML and WSDL do not define the meaning of data.

Å WSDL does not define what a service does.

Å It is an active research areaðunresolved issues.

50,000-Foot View: Common Misconceptions

13

© 2008 Carnegie Mellon University

It Is Very Easy To Develop Applications Based on
Services

It is relatively easy to build applications and services that work with a
particular infrastructure . . . but designing a ñgoodò service might not be that
easy.

From a service provider perspective

Å Not many best practices for designing services

ð What is the right granularity?

ð What is the right Quality of Service (QoS)? Can you guarantee it?

Å Have to know and anticipate potential consumers and usage patterns

ð ñIf you build it they will comeò ïCan you afford this?

From a service consumer perspective

Å Ease depends on tool availability for SOA infrastructure.

Å Larger granularity may lead to larger incompatibilities.

Å Most difficult part is compositionðdata and process mismatches.

50,000-Foot View: Common Misconceptions

14

© 2008 Carnegie Mellon University

A Service Registry Allows Service Binding
Dynamically at Runtime

Current technologies have not advanced to the point that this is

possible in production environments.

Requires the use of a common formal ontology by service providers and

consumers within a domain.

Å Data model that represents a set of concepts within a domain and the

relationships between those concepts (from Wikipedia)

Requires the construction of intelligent service consumers that

Å Construct the right queries for the discovery of services

Å Compose services when there is not a single service that can process the

request

Å Provide the right data to invoke a service that was discovered at runtime

50,000-Foot View: Common Misconceptions

15

© 2008 Carnegie Mellon University

Agenda

Introduction

Å SOA Challenges

Å Common Misconceptions

Å Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

16

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Service Granularity 1

The granularity of service interfaces can affect the end-to-end performance

of systems because services are executed across a network as an

exchange of a service request and a service response.

Å If service interfaces are too coarse-grained, consumers will receive more

data than they need in their response message.

Å If service interfaces are too fine-grained, consumers will have to make

multiple trips to the service to get all the data they need.

1,000-Foot View

17

© 2008 Carnegie Mellon University

é or all four operations can be
implemented where getCustomerInfo is a

composite service, but the individual
services are available as well.

Sample Consequences of Decisions:
Service Granularity 2

Order

Management

System

[Basic Info, Order History, Pending Orders]

getCustomerInfo (CustomerId)

The Order Management System can expose
the business functionality of getting all the
customer information in one call é

OrderHistory getOrderHistory (CustomerId)

CustInfo getCustBasicInfo (CustomerId)

Order[] getPendingOrders (CustomerId)

é or the service can be more granular and
provide three different operations for each

type of information

1,000-Foot View

18

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Requirements 1

If service developers do not understand functionality and QoS needs of

potential users of services, they might end up developing and deploying

services that are never used.

1,000-Foot View

19

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Requirements 2

Shipping

System 3

Schedule Pickup

Schedule Pickup

Track shipment

Schedule Pickup

Track shipment

Track Shipment

Shipping

System 2

Shipping

System 1

Get Quote

Get Quote
If Shipping System 1 does not

implement the Get Quote
functionality, consumers

cannot ñautomaticallyò decide
on the cheapest option.

This can result in potential
revenue loss for the shipping

system.

1,000-Foot View

20

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 1

The decision of where to assign responsibility for transaction management

has an effect on development.

Scenario

Å Order Processing application needs to place an order.

Å Three systems are involved

ð The Order Management System controls order creation

ð The Financial System contains customer financial information

ð The Inventory System contains part information and stock

Å An order is considered complete after the customer financial status is

verified and the parts in inventory are marked for shipment.

1,000-Foot View

21

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 2

Order

Management

System

®placeOrder

¬Responsibility: Service Provider

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

® placeOrder

®markInventory ®getFinancialInformation

1. Application
invokes

placeOrder
service.

4. Order Management
System invokes

getFinancialInformation.

2. Infrastructure
locates placeOrder

service.

3. Order Management
System starts
transaction.

5. Order Management
System invokes
markInventory.

6. Application
receives operation

status.

1,000-Foot View

NOTE: The service
provider may

decide to bypass
service interfaces
and call systems

directly.

22

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 3

Order

Management

System

®createOrder

­Responsibility: Infrastructure Provider

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

® placeOrder

®markInventory ®getFinancialInformation

1. Application
invokes placeOrder

service.

3. Infrastructure invokes
getFinancialInformation.

2. Infrastructure is
aware that this is a

transactional
operation and starts

transaction.

5. Infrastructure
invokes createOrder.

4. Infrastructure invokes
markInventory.

6. Application
receives operation

status.

NOTE: Depending
on the

implementation,
operations may
require ñundoò

operations.

1,000-Foot View

23

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 4

Order

Management

System

®createOrder

®Responsibility: Service Consumer

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

® getFinancialInformation

®markInventory

® createOrder

®markInventory ®getFinancialInformation

2. Application
invokes all

three services.1. Application
starts transaction.

NOTE: Depending
on the

implementation,
operations may
require ñundoò

operations.

1,000-Foot View

24

© 2008 Carnegie Mellon University

Agenda

Introduction

Å SOA Challenges

Å Common Misconceptions

Å Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

25

© 2008 Carnegie Mellon University

Approach

Assembled an international research group to analyze the current state of

the practice and current research initiatives in SOA

Proposed a long-term consensus research agenda

Performed an extensive literature review and looked at case studies of

successful SOA adoption

Created a service-oriented systems development lifecycle that supports

the strategic approach to SOA adoption shown in case studies

Identified areas of SOA research necessary to fill in the gaps

Evolved findings through multiple workshops

26

© 2008 Carnegie Mellon University

26

SOA Problem and Solution Space

Successful

SOA adoption

has a strong

link between

business

strategy and

SOA strategy

Domain Area Context Business Drivers

Service Strategy

E
n

g
in

e
e

ri
n

g

B
u

s
in

e
s

s

O
p

e
ra

ti
o

n
s

Solution Space

Planning Space

Problem Space

Cross-Cutting

27

© 2008 Carnegie Mellon University

Expanded View of the SOA Problem and Solution
Space

27

SOA strategy is

the way in which

SOA is going to

address the

organization's

business drivers

for SOA adoption

SOA plans are

executed to

produce a

service-oriented

system.

Feedback loops

reflect the dynamic

nature of service-

oriented

environments

The organizationôs

domain area and

context enable and/or

constrain the SOA

strategy

Measurements

are gathered to

test the

effectiveness of

the strategy and

the system itself

Service Model Business Model

Plan Formulation

SOA Plans

Plan Execution

Service-Oriented

System

Evaluation/

Optimization

Domain Area Context Business Drivers

Solution Space

Planning Space

Problem Space

Strategy

Formulation

SOA Strategy

28

© 2008 Carnegie Mellon University

Relationship between Solution Space and
Research Topics

The development of a

service-oriented system

requires business,

engineering and operations

to be made, as well as other

cross-cutting decisions.

Our proposed taxonomy of

research topics is divided

into these decision areas.

The research topics correspond to areas where new/more/different

research is needed to support a strategic approach to service-oriented

systems development

Domain Area Context Business Drivers

Service Strategy

E
n

g
in

e
e

ri
n

g

B
u

s
in

e
s

s

O
p

e
ra

ti
o

n
s

Solution Space

Planning Space

Problem Space

Cross-Cutting

29

© 2008 Carnegie Mellon University

Taxonomy of Research Issues

30

© 2008 Carnegie Mellon University

Sample of Engineering Research Topics

30

SOA Multi-Level Testing:

Functional, Integration,

System

Simulation and ñWhat-Ifò

Analysis in Service-

Oriented Environments

Service Provider Practices to

Support Testing of Service

Consumers

SOA Test Beds and

Benchmarks

Engineering

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

Service-Oriented System Life

Cycle Models

Development Processes and

Methodologies for Service-

Oriented Systems

31

© 2008 Carnegie Mellon University

Sample of Business Research Topics

31

Business

SOA Strategy Selection

Business Case for Service

Orientation

Mapping between Business

Processes and Services

Organizational Structures to

Support Service-Oriented

Environments

Business Indicators

Models for Organizational

Structures that Enable Service-

Oriented Systems Development

Skills Required to Develop, Use

and Maintain Service-Oriented

Systems

Models for Workforce Allocation in

Service-Oriented Systems

Projects

Organizational and Funding

Models for Shared Services

Techniques to Establish and

Document the Business

Case for SOA Adoption

32

© 2008 Carnegie Mellon University

Sample of Operations Research Topics

32

Operations

Adoption

Monitoring

Support

Operations Indicators

Service Usability

End-User Service Composition Tools

Models of Service Consumer Adoption

Pricing Models for Service Providers

Processes for Support of Service-

Oriented Systems

Front-end and Back-End Problem

Management in Service-Oriented

Environments

Service-Level Agreements in Service-

Oriented Environments

33

© 2008 Carnegie Mellon University

Sample of Cross-Cutting Research Topics

33

Cross-Cutting Techniques and Guidelines to Develop

SOA Governance

Enterprise-Wide vs. Local SOA

Governance

Techniques to Model Policy, Risk and

Trust in Support of SOA Governance

Automation

Design-Time and Runtime Validation

of Compliance with SOA Governance

Governance

Training and Education

Risk Management in

SOA Environments

Social and Legal Issues

Security
Identity Management in Multi-

Organizational SOA

Environments

 Secure Dynamic Service

Composition

Security Management in

Distributed SOA

Environments

Trust Establishment and Trust

Brokering

34

© 2008 Carnegie Mellon University

Research Topics in Maintenance and Evolution of
Service-Oriented Systems

What does maintenance and evolution look

like in this dynamic, heterogeneous and

potentially distributed development and

maintenance environment?

Engineering

Evolution Patterns of Service-Oriented

Systems

Tools for the Verification and

Validation of Compliance with

Constraints during Maintenance and

Evolution Activities

Round-Trip Engineering in Service-

Oriented Systems.

Tools, Techniques and

Environments to Support

Maintenance Activities

Multilanguage System Analysis

and Maintenance

Reengineering Processes for

Migration to SOA Environments

Short-Term Research

Issues

Long-Term Research

Issues

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

35

© 2008 Carnegie Mellon University

Research Topics in Maintenance and Evolution of
Service-Oriented Systems

What does maintenance and evolution look

like in this dynamic, heterogeneous and

potentially distributed development and

maintenance environment?

Engineering

Evolution Patterns of Service-Oriented

Systems

Tools for the Verification and

Validation of Compliance with

Constraints during Maintenance and

Evolution Activities

Round-Trip Engineering in Service-

Oriented Systems.

Tools, Techniques and

Environments to Support

Maintenance Activities

Multilanguage System Analysis

and Maintenance

Reengineering Processes for

Migration to SOA Environments

Short-Term Research

Issues

Long-Term Research

Issues

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

36

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to
Support Maintenance ActivitiesðRationale 1

Complexity of the maintenance process in an SOA environment increases,

especially if there are external consumers and providers involved

Å Impact analysis activities for service providers have to consider a potentially

unknown set of users

Å Impact analysis for service implementation code has to consider direct

users of the service implementation code, as well as users of the service

interfaces

Å Configuration management also becomes more complex, starting from the

decision of what to put under configuration management

Å Release cycles between services and consumers, services and

infrastructure, and consumers and infrastructure ideally should be

coordinated, but may not be possible when these are external

37

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to
Support Maintenance ActivitiesðRationale 2

Another aspect that makes maintenance challenging is services that are

shared among multiple business processes or consumers

Å Who is responsible for the maintenance of a shared service?

Å What happens when multiple business units have different requirements for

the same service?

Å How is a service evolved in the context of the multiple business processes

that use it?

38

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance ActivitiesðCurrent Efforts 1

Not much work that specifically addresses or provides guidelines for

maintenance activities in SOA environments

Maintenance Processes

Å SOA Life Cycles, such as the one proposed by IBM and others, include

maintenance in the post-deployment management phase of a very iterative

life cycle

Å Mittal recommends the use of a robust development methodology the first

time the service-oriented is rolled out and the use of lighter methodologies

to support ongoing maintenance

Å However, there is no concrete methodology for maintenance of service-

oriented systems

39

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance ActivitiesðCurrent Efforts 3

Change Management and Version Control

Å Area that has received a lot of attention from the research and vendor

community [Brown, Evdemon, Lhotaka, Lublisnky, Peltz, Robinson]

Å Reason is that the stability of service interfaces is part of the agreement

(formal or informal) between service providers and consumers

Å Usually refers to versioning of the serviceðmainly Web Servicesðand not

to other components of a service-oriented system

Organizational Structures and Roles

Å Some preliminary research that is looking at roles and responsibilities for

development, maintenance and evolution of service-oriented systems

[Kajko-Mattsson]

40

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance ActivitiesðChallenges and Gaps

Development of specialized methods and tools to support the maintenance

and evolution of large service-oriented systems is in the early stages

Å Current efforts seem to indicate that maintenance activities for service-

oriented systems are not that different than in traditional systems

Å However, we are still in the stage where most service-oriented systems are

deployed for internal integration, where there is still some control over

deployed services

Emergence of market for third-party services and the deployment of more

service-oriented systems that cross organizational boundaries will have to

change current maintenance practices

41

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance ActivitiesðCurrent Efforts 2

Change Impact Analysis

Å Active area of work at different levels

ð Top-down approach to analyze the impact of changes to business

processes all the way down to the source code to identify affected

system components [Xiao]

ð Bottom-up approach is to analyze the impact of changes to a serviceð

or its implementationðon the business processes and other consumers

of the service [Zhang]

Å Integrated development environments are starting to integrate impact

analysis, but the usual assumption is that there is control and full access to

all system elements

42

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA EnvironmentsðRationale

Migration of legacy systems to SOA environments has been achieved

within a number of domains, including banking, electronic payment, and

development tools, showing that the promise is beginning to be fulfilled

While migration can have significant value, any specific migration requires

a concrete analysis of the feasibility, risk and cost involved

The strategic identification and extraction of services from legacy code is

crucial as well

43

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA EnvironmentsðCurrent Efforts 1

There are not many reengineering

techniques that focus on a ñfull-circleò

model, such as the "SOA-Migration

Horseshoe" proposed by Winter and

Ziemann

This approach integrates software

reengineering techniques with

business process modeling

44

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA EnvironmentsðCurrent Efforts 2

The larger amount of work is on techniques in the ñbottom portionò of the

horseshoe for exposing legacy functionality as services, mainly Web

Services [Chawla]

Tools to support this type of migration are available as language libraries

and/or integrated into common IDEs such as the Eclipse WTP and the

.NET development environment, or as part of infrastructure products such

as Apache Axis

