
GET Connected:
A Companion Tutorial on Web-based Services

ICSOC Tutorial - 6 December 2008

Dr. Jim Webber
http://jim.webber.name

Dr. Halvard Skogsrud
halvard@skogsrud.com

Roadmap

•  Introduction and Motivation
•  The Web Architecture
•  Simple Web Integration
•  CRUD Services
•  Hypermedia
•  Scalability
•  ATOM and ATOMPub
•  Security
•  Conclusions and further thoughts

© ThoughtWorks 2008 2

Introduction

•  This is a tutorial about the Web
•  It’s very HTTP centric
•  But it’s not about Web pages!
•  The Web is a middleware platform which is…

–  Globally deployed
–  Has reach
–  Is mature
–  And is a reality in every part of our lives

•  Which makes it interesting for distributed systems geeks

© ThoughtWorks 2008 3

Motivation

•  This follows the plot from a book called “GET /Connected”
which is currently being written by:
–  Jim Webber
–  Savas Parastatidis
–  Ian Robinson

•  The book deals with the Web as a distributed computing
platform
–  The Web as a whole, not just REST

•  And so does this tutorial…

BACKGROUND
A brief history of the Web

5 © ThoughtWorks 2008

Why the Web was Inevitable

Tim Berners‐Lee is a physicist 

(Sir Tim is also a knight, but that’s 
not important right now) 

6 © ThoughtWorks 2008

He lived in a hole in the ground 

Underneath a big mountain 
(in Switzerland) 

Why the Web was Inevitable

7 © ThoughtWorks 2008

And because he was a physicist (and not 
yet a knight)... 

...he only had a big atom‐
smashing thing for company 

Why the Web was Inevitable

8 © ThoughtWorks 2008

And for a lonesome physicist stuck 
underground with smashed up 
atoms for company... 

...gopher just wasn’t going 
to cut it! 

Why the Web was Inevitable

9 © ThoughtWorks 2008

Web Fundamentals

•  To embrace the Web, we need to understand how it works
•  The Web is a distributed hypermedia model

–  It doesn’t try to hide that distribution from you!
•  Our challenge:

–  Figure out the mapping between our problem domain and the
underlying Web platform

10 © ThoughtWorks 2008

Key Actors in the Web Architecture Client 
Cache 

Router 

Firewall 

ISP 

Proxy 
Server 

Firewall 

Web 
Server 

Resources 

Firewall 

Web 
Server 

Reverse 
Proxy 

Resources 
11 © ThoughtWorks 2008

Web Characteristics

•  Scalable
•  Fault-tolerant
•  Recoverable
•  Secure
•  Loosely coupled

•  Precisely the same characteristics we want in business
software systems!

12 © ThoughtWorks 2008

Scalability

•  Web is truly Internet-scale
–  Loose coupling
•  Growth of the Web in one place is not impacted by changes

in other places
–  Uniform interface
•  HTTP defines a standard interface for all actors on the Web
•  Replication and caching is baked into this model
–  Caches have the same interface as real resources!

–  Stateless model
•  Supports horizontal scaling

13 © ThoughtWorks 2008

Fault Tolerant

•  The Web is uses a stateless model
–  All information required to process a request must be present

in that request
•  Sessions are still available, but must be handled in a Web-

consistent manner
•  Statelessness also means easy replication

–  One Web server is replaceable with another
–  Easy fail-over, horizontal scaling

14 © ThoughtWorks 2008

Recoverable

•  The Web places emphasis on repeatable information
retrieval
–  GET is idempotent
–  In failure cases, can safely repeat GET on resources

•  HTTP verbs plus rich error handling help to remove
guesswork from recovery
–  HTTP statuses tell you what happened!

15 © ThoughtWorks 2008

Secure

•  HTTPs is a mature technology
–  Based on SSL for secure point-to-point information retrieval

•  Isn’t sympathetic to Web architecture
–  Can’t cache!

•  As we shall see, higher-order protocols like Atom are
starting to change this...

16 © ThoughtWorks 2008

Loosely Coupled

•  Adding a Web site to the WWW does not affect any other
existing sites

•  All Web actors support the same, uniform interface
–  Easy to plumb new actors into the big wide web
•  Caches, proxies, servers, resources, etc

17 © ThoughtWorks 2008

SIMPLE WEB INTEGRATION
Web != REST…

18 © ThoughtWorks 2008

Web Tunnelling

•  Web Services tunnel SOAP over HTTP
–  Using the Web as a transport only
–  Ignoring many of the features for robustness the Web has built

in
•  Many Web people do the same!

–  URI tunnelling, POX approaches are the most popular styles on
today’s Web

–  Worse than SOAP!
•  Less metadata!

But they claim to be 
“lightweight” and 

RESTful 

19 © ThoughtWorks 2008

URI Tunnelling Pattern

•  Web servers understand URIs
•  URIs have structure
•  Methods have signatures
•  Can match URI structure to method signature
•  E.g.

–  http://example.com/addNumbers?p1=10&p2=11
–  int addNumbers(int i, int j) { return i + j; }

20 © ThoughtWorks 2008

URI Tunnelling Strengths

•  Very easy to understand
•  Great for simple procedure-calls
•  Simple to code

–  Do it with the servlet API, HttpListener, IHttpHandler, RAILS,
whatever!

•  Interoperable
–  It’s just URIs!

21 © ThoughtWorks 2008

URI Tunnelling Weaknesses

•  It’s brittle RPC!
•  Tight coupling, no metadata

–  No typing or “return values” specified in the URI
•  Not robust – have to handle failure cases manually
•  No metadata support

–  Construct the URIs yourself, map them to the function
manually

•  You typically use GET (prefer POST)
–  OK for functions, but against the Web for procedures with side-

effects

22 © ThoughtWorks 2008

POX Pattern

•  Web servers understand how to process requests with
bodies
–  Because they understand forms

•  And how to respond with a body
–  Because that’s how the Web works

•  POX uses XML in the HTTP request and response to move a
call stack between client and server

23 © ThoughtWorks 2008

POX Strengths

•  Simplicity – just use HTTP POST and XML
•  Re-use existing infrastructure and libraries
•  Interoperable

–  It’s just XML and HTTP
•  Can use complex data structures

–  By encoding them in XML

24 © ThoughtWorks 2008

POX Weaknesses

•  Client and server must collude on XML payload
–  Tightly coupled approach

•  No metadata support
–  Unless you’re using a POX toolkit that supports WSDL with

HTTP binding (like WCF)
•  Does not use Web for robustness
•  Does not use SOAP + WS-* for robustness

25 © ThoughtWorks 2008

Web Abuse

•  Both POX and URI Tunnelling fail to take advantage of the
Web
–  Ignoring status codes
–  Reduced scope for caching
–  No metadata
–  Manual crash recovery/compensation leading to high

development cost
–  Etc

•  They’re useful in some situations
–  But they’re not especially robust patterns

© ThoughtWorks 2008 26

CRUD WEB SERVICES
Moving on up…

© ThoughtWorks 2008 27

Using the Web

•  URI tunnelling and POX use the Web as a transport
–  Just like SOAP without metadata support

•  CRUD services begin to use the Web’s coordination support
•  But the Web is more than transport

–  Transport, plus
–  Metadata, plus
–  Fault model, plus
–  Component model, plus
–  Runtime environment, plus...

HTTP 
Headers 
Status Codes 

Uniform 
Interface 
Caches, proxies, 
servers, etc 

28 © ThoughtWorks 2008

Resources

•  A resource is something “interesting” in your system
•  Can be anything

–  Spreadsheet (or one of its cells)
–  Blog posting
–  Printer
–  Winning lottery numbers
–  A transaction
–  Others?

29 © ThoughtWorks 2008

Interacting with Resources

•  We deal with representations of resources
–  Not the resources themselves
•  Pass-by-value: data in message bodies
•  Pass-by-reference: exchange URIs

–  Representation can be in any format
•  Any media type

•  Each resource implements a standard uniform interface
–  The HTTP interface

•  Resources have names and addresses (URIs)
–  HTTP URIs (aka URLs)

30 © ThoughtWorks 2008

Resource Architecture

Physical Resources 

Logical Resources 

Uniform Interface 
(Web Server) 

Resource RepresentaRon 
(e.g. XML document) 

Consumer 
(Web Client) 

31 © ThoughtWorks 2008

Resource Representations

•  Making your system Web-friendly increases its surface area
–  You expose many resources, rather than fewer endpoints

•  Each resource has one or more representations
–  Representations like JSON or XML good for the programmatic

Web
•  Moving representations across the network is the way we

transact work in a Web-native system

32 © ThoughtWorks 2008

URIs

•  URIs are addresses of resources in Web-based systems
–  Each resource has at least one URI

•  They identify “interesting” things
–  i.e. Resources

•  Any resource implements the same (uniform) interface
–  Which means we can access it programmatically!

33 © ThoughtWorks 2008

CRUD Resource Lifecycle

•  The resource is created with POST
•  It’s read with GET
•  And updated via PUT
•  Finally it’s removed using DELETE

© ThoughtWorks 2008 34

POST Semantics

•  POST creates a new resource
•  But the server decides on that resource’s URI
•  Common human Web example: posting to Web log

–  Server decides URI of posting and any comments made on that
post

•  Programmatic Web example: creating a new employee
record
–  And subsequently adding to it

35 © ThoughtWorks 2008

POST Request

POST / HTTP/1.1

Content-Type: text/xml

Host: localhost:8888

Content-Length:

Connection: Keep-Alive

<buy>

 <symbol>ABCD</symbol>

 <price>27.39</price>

</buy>

Verb, path, and HTTP 
version 

Content type (XML) 

Content (again XML) 

36 © ThoughtWorks 2008

POST Response

201 CREATED

Location: /orders/halvards/ABCD/2007-07-080-13:50:53

37 © ThoughtWorks 2008

When POST goes wrong

•  We may get 4xx or 5xx errors
–  Client versus server problem

•  We turn to GET!
•  Find out the resource states first

–  Then figure out how to make forward or backward progress
•  Then solve the problem

–  May involve POSTing again
–  May involve a PUT to rectify server-side resources in-place

© ThoughtWorks 2008 38

Safety and Idempotency

•  A safe operation is one which changes no state at all
•  An idempotent operation is one which updates state in an

absolute way, and the result of executing the operation
more than once is the same as executing it once
–  E.g. x = 4 rather than x += 2

•  Web-friendly systems scale because of safety
–  Caching!

•  And are fault tolerant because of idempotent behaviour
–  Just re-try in failure cases

39 © ThoughtWorks 2008

GET Semantics

•  GET retrieves the representation of a resource
•  Should be safe

–  Shared understanding of GET semantics
–  Don’t violate that understanding!

40 © ThoughtWorks 2008

GET Exemplified

GET /employees?id=1234 HTTP/1.1

Accept: text/xml

Host: crm.example.com

41 © ThoughtWorks 2008

When GET Goes wrong

•  Simple!
–  Just 404 – the resource is no longer available

•  Are you sure?
–  GET again!

•  GET is safe (and hence also idempotent)
–  Great for crash recovery scenarios!

© ThoughtWorks 2008 42

PUT Semantics

•  PUT creates a new resource but the client decides on the
URI
–  Providing the server logic allows it

•  Also used to update existing resources by overwriting them
in-place

Why not POST?  Not idempotent! 

43 © ThoughtWorks 2008

PUT Request

PUT /orders/halvards/ABCD/2007-07-080-13:50:53 HTTP/1.1

Content-Type: text/xml

Host: localhost:8888

Content-Length:

Connection: Keep-Alive

<buy>

 <symbol>ABCD</symbol>

 <price>27.44</price>

</buy>

Verb, path and HTTP version 

Updated content  
(higher buy price) 

44 © ThoughtWorks 2008

PUT Response

200 OK

Location: /orders/halvards/ABCD/2007-07-080-13:50:53

Content-Type: text/xml

<nyse:priceUpdated .../>
Minimalist response might contain 

only status and locaRon 

45 © ThoughtWorks 2008

When PUT goes wrong

•  If we get 5xx error, or some 4xx errors simply PUT again!
–  PUT is idempotent

•  If we get errors indicating incompatible states (409, 417)
then do some forward/backward compensating work
–  And maybe PUT again

© ThoughtWorks 2008 46

DELETE Semantics

•  Stop the resource from being accessible
–  Logical delete, not necessarily physical

•  Request
DELETE /user/halvards HTTP 1.1

Host: example.org

•  Response
200 OK

Content-Type: application/xml

<admin:userDeleted>

 halvards

</admin:userDeleted>

This is important for 
decoupling 

implementaRon details 
from resources 

47 © ThoughtWorks 2008

When DELETE goes wrong

•  DELETE again!
–  Delete is idempotent!
–  DELETE once, DELETE 10 times has the same effect: one

deletion
•  Some 4xx responses indicate that deletion isn’t possible

–  The state of the resource isn’t compatible
–  Try forward/backward compensation instead

© ThoughtWorks 2008 48

CRUD is Good?

•  CRUD is good
–  But it’s not great

•  CRUD-style services use some HTTP features
•  But the application model is limited

–  Suits database-style applications
•  CRUD has limitations

–  CRUD ignores hypermedia
–  CRUD encourages tight coupling through URI templates
–  CRUD encourages server and client to collude

•  The Web supports more sophisticated patterns than CRUD!

© ThoughtWorks 2008 49

SEMANTICS
A little detour…

Microformats

•  Microformats are an example of little “s” semantics
•  Innovation at the edges of the Web

–  Not by some central design authority (e.g. W3C)
•  Started by embedding machine-processable elements in

Web pages
–  E.g. Calendar information, contact information, etc
–  Using existing HTML features like class, rel, etc

Microformats and Resources

•  Use Microformats to structure resources where formats
exist
–  I.e. Use hCard for contacts, hCalendar for data

•  Create your own formats (sparingly) in other places
–  Annotating links is a good start
–  <link rel="withdraw.cash" .../>
–  <link rel="service.post" type="application/atom+xml"

href="{post-uri}" title="some title">

•  The rel attribute describes the semantics of the referred
resource

HYPERMEDIA
The HATEOAS Constraint…

© ThoughtWorks 2008 53

RESTafarians?

© ThoughtWorks 2008 54

HEAD Semantics

•  HEAD is like GET, except it only retrieves metadata
•  Request

HEAD /user/halvard HTTP 1.1

Host: example.org

•  Response
200 OK

Content-Type: application/xml

Last-Modified: 2007-07-08T15:00:34Z

Etag: aabd653b-65d0-74da-bc63-4bca-ba3ef3f50432

Useful for caching, 
performance 

55 © ThoughtWorks 2008

OPTIONS Semantics

•  Asks which methods are supported by a resource
–  Easy to spot read-only resources for example

•  Request
OPTIONS /user/halvard HTTP 1.1

Host: example.org

•  Response
200 OK

Allowed: GET,HEAD,POST

You can only read and add to 
this resource 

56 © ThoughtWorks 2008

Conditional GET Pattern

•  Bandwidth-saving pattern
•  Requires client and server to work together
•  Server sends Last-Modified and/or ETag headers with

representations
•  Client sends back those values when it interacts with

resource in If-Modified-Since and/or If-None-Match
headers

•  Server responds with a 200 an empty body if there have
been no updates to that resource state

•  Or gives a new resource representation (with new Last-
Modified and/or ETag headers)

57 © ThoughtWorks 2008

HTTP Headers

•  Headers provide metadata to assist processing
–  Identify resource representation format (media type), length of

payload, supported verbs, etc
•  HTTP defines a wealth of these

–  And like status codes they are our building blocks for robust
service implementations

58 © ThoughtWorks 2008

Must-know Headers

•  Authorizaton
–  Contains credentials (basic, digest, WSSE, etc)
–  Extensible

•  Etag/If-None-Match
–  Opaque identifier – think “checksum” for resource

representations
–  Used for conditional GET

•  Content-Type
–  The resource representation form
•  E.g. application/xml, application/xhtml+xml

59 © ThoughtWorks 2008

Yet More Must-Know Headers

•  If-Modified-Since/Last-Modified
–  Used for conditional GET too

•  Location
–  Used to flag the location of a created/moved resource
–  In combination with:
•  201 Created, 301 Moved Permanently, 302 Found, 307

Temporary Redirect, 300 Multiple Choices, 303 See Other
•  WWW-Authenticate

–  Used with 401 status
–  Informs client what authentication is needed

60 © ThoughtWorks 2008

Describing Contracts with Links

•  The value of the Web is its “linked-ness”
–  Links on a Web page constitute a contractfor page traversals

•  The same is true of the programmatic Web
•  Resource representations can contain other URIs
•  Links act as state transitions
•  Application (conversation) state is captured in terms of

these states
•  Use Links to describe state transitions in programmatic Web

services
–  By navigating resources you change application state

61 © ThoughtWorks 2008

Links are State Transitions

62 © ThoughtWorks 2008

Workflow

•  How does a typical enterprise workflow look when it’s
implemented in a Web-friendly way?

•  Let’s take Starbuck’s as an example, the happy path is:
–  Make selection
•  Add any specialities

–  Pay
–  Wait for a while
–  Collect drink

63 © ThoughtWorks 2008

Placing an Order

•  Place your order by POSTing it to a well-known URI
–  http://example.starbucks.com/order

Client 

St
ar
bu

ck
’s
 S
er
vi
ce
 

64 © ThoughtWorks 2008

Placing an Order: On the Wire

•  Request
POST /order HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

</order>

•  Response
201 Created

Location: http://
starbucks.example.org/order?
1234

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<link rel="payment"
href="https://
starbucks.example.org/
payment/order?1234"

 type="application/xml"/>

</order>

A link! Is this the start 
of an API? 

65 © ThoughtWorks 2008

Whoops! A mistake

•  I like my coffee to taste like coffee!
•  I need another shot of espresso

–  What are my OPTIONS?

 Request 
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.org

 Response 
200 OK

Allow: GET, PUT Phew! I can 
update my order, 

for now 

66 © ThoughtWorks 2008

Optional: Look Before You Leap

•  See if the resource has changed since you submitted your
order
–  If you’re fast your drink hasn’t been prepared yet

 Request 
PUT /order?1234 HTTP 1.1

Host: starbucks.example.org

Expect: 100-Continue

 Response 
100 Continue

I can sRll PUT this 
resource, for now. 

(417 ExpectaRon Failed 
otherwise) 

67 © ThoughtWorks 2008

Amending an Order

•  Add specialities to you order via PUT
–  Starbucks needs 2 shots!

Client 

St
ar
bu

ck
’s
 S
er
vi
ce
 

68 © ThoughtWorks 2008

Amending an Order: On the Wire

•  Request
PUT /order?1234 HTTP 1.1
Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">
<drink>latte</drink>

<additions>shot</additions>

<link rel="payment"
href="https://
starbucks.example.org/payment/
order?1234"

 type="application/xml"/>

</order>

•  Response
200 OK
Location: http://

starbucks.example.org/order?
1234

Content-Type: application/xml
Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>
<link rel="payment"

href="https://
starbucks.example.org/payment/
order?1234"

 type="application/xml"/>

</order>

69 © ThoughtWorks 2008

Statelessness

•  Remember interactions with resources are stateless
•  The resource “forgets” about you while you’re not directly

interacting with it
•  Which means race conditions are possible
•  Use If-Unmodified-Since on a timestamp to make sure

–  Or use If-Match and an ETag
•  You’ll get a 412 PreconditionFailed if you lost the race

–  But you’ll avoid potentially putting the resource into some
inconsistent state

70 © ThoughtWorks 2008

Warning: Don’t be Slow!
•  Can only make changes until someone actually makes your

drink
–  You’re safe if you use If-Unmodified-Since or If-Match
–  But resource state can change without you!

 Request 
PUT /order?1234 HTTP 1.1

Host: starbucks.example.org

...

 Response 
409 Conflict

Too slow! Someone else has 
changed the state of my order 

 Request 
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.org

 Response 
Allow: GET

71 © ThoughtWorks 2008

Order Confirmation: On the Wire

•  Request
GET /order?1234 HTTP 1.1
Host: starbucks.example.org
Content-Type: application/xml
Content-Length: ...

•  Response
200 OK
Location: http://

starbucks.example.org/order?
1234

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>
<link rel="payment" href="https://

starbucks.example.org/payment/
order?1234"

 type="application/xml"/>
</order>

Are they trying to tell me 
something with hypermedia? 

72 © ThoughtWorks 2008

Order Payment
•  PUT your payment to the order resource

https://starbucks.example.org/payment/order?1234

Client 

St
ar
bu

ck
’s
 S
er
vi
ce
 

New resource! 
h^ps://starbucks.example.org/payment/order?1234 

73 © ThoughtWorks 2008

How did I know to PUT?

•  The client knew the URI to PUT to from the link
–  PUT is also idempotent (can safely re-try) in case of failure

•  Verified with OPTIONS
–  Just in case you were in any doubt

 Request 
OPTIONS /payment/order?1234 HTTP 1.1

Host: starbucks.example.org

 Response 
Allow: GET, PUT

74 © ThoughtWorks 2008

Order Payment: On the Wire

•  Request
PUT /payment/order?1234 HTTP 1.1
Host: starbucks.example.org
Content-Type: application/xml
Content-Length: ...

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>

<name>John Citizen</name>
<amount>4.00</amount>
</payment>

•  Response
201 Created
Location: https://

starbucks.example.org/
payment/order?1234

Content-Type: application/xml

Content-Length: ...

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

75 © ThoughtWorks 2008

Check that you’ve paid

•  Request
GET /order?1234 HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

•  Response
200 OK

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

</order>

My “API” has changed, 
because I’ve paid enough 

now 

76 © ThoughtWorks 2008

Finally drink your coffee...

Source: h^p://images.businessweek.com/ss/06/07/top_brands/image/starbucks.jpg 

77 © ThoughtWorks 2008

What did we learn from Starbucks?

•  HTTP has a header/status combination for every occasion
•  APIs are expressed in terms of links, and links are great!
•  XML is fine, but we could also use formats like Atom, JSON

or even default to XHTML as a sensible middle ground
•  Form encoding still works

–  application/x-www-form-urlencoded media type
•  State machines (defined by links) are important

–  Just as in Web Services…

78 © ThoughtWorks 2008

SCALABILITY

How on Earth does a text-based, synchronous, client-
server protocol scale?

79 © ThoughtWorks 2008

Statelessness

•  Every action happens in isolation
–  This is a good thing!

•  In between requests the server knows nothing about you
–  Excepting any state changes you caused when you last

interacted with it.
•  Keeps the interaction protocol simpler

–  Makes recovery, scalability, failover much simpler too
–  Avoid cookies!

80 © ThoughtWorks 2008

Application vs Resource State

•  Useful services hold persistent data – Resource state
–  Resources are buckets of state
–  What use is Google without state?

•  Brittle implementations have application state
–  They support long-lived conversations
–  No failure isolation
–  Poor crash recovery
–  Hard to scale, hard to do fail-over fault tolerance

•  Recall stateless Web Services – same applies in the Web
too!

81 © ThoughtWorks 2008

Scaling Horizontally

•  Web farms have delivered horizontal scaling for years
–  Though they sometimes do clever things with session affinity to

support cookie-based sessions
•  In the programmatic Web, statelessness enables scalability

–  Just like in the Web Services world

82 © ThoughtWorks 2008

Scalable Deployment Configuration

•  Deploy services onto many servers
•  Services are stateless

–  No sessions!
•  Servers share only back-end data

83 © ThoughtWorks 2008

Scaling Vertically… without servers

•  The most expensive round-trip:
–  From client
–  Across network
–  Through servers
–  Across network again
–  To database
–  And all the way back!

•  The Web tries to short-circuit this
–  By determining early if there is any actual work to do!
–  And by caching

84 © ThoughtWorks 2008

Caching in a Scalable Deployment

•  Cache (reverse proxy) in front of server farm
–  Avoid hitting the server

•  Proxy at client domain
–  Avoid leaving the LAN

•  Local cache with client
–  Avoid using the network

85 © ThoughtWorks 2008

Being workshy is a good thing!

•  Provide guard clauses in requests so that servers can
determine easily if there’s any work to be done
–  Caches too

•  Use headers:
–  If-Modified-Since
–  If-None-Match
–  And friends

•  Web infrastructure uses these to determine if its worth
performing the request
–  And often it isn’t
–  So an existing representation can be returned

© ThoughtWorks 2008 86

Retrieving a Resource Representation

•  Request
GET /transactions/debit/1234 HTTP 1.1
Host: bank.example.org
Accept: application/xml
If-Modified-Since: 2007-07-08T15:00:34Z
If-None-Match: aabd653b-65d0-74da-bc63-4bca-ba3ef3f50432
•  Response
200 OK
Content-Type: application/xml
Content-Length: ...
Last-Modified: 2007-07-08T15:10:32Z
Etag: abbb4828-93ba-567b-6a33-33d374bcad39
<t:debit xmlns:t="http://bank.example.com">
 <t:sourceAccount>12345678</t:sourceAccount>
 <t:destAccount>987654321</t:destAccount>
 <t:amount>299.00</t:amount>
 <t:currency>GBP</t:currency>
</t:debit> 87 © ThoughtWorks 2008

Not Retrieving a Resource Representation

•  Request
GET /transactions/debit/1234 HTTP 1.1
Host: bank.example.org
Accept: application/xml
If-Modified-Since: 2007-07-08T15:00:34Z
If-None-Match: aabd653b-65d0-74da-bc63-4bca-

ba3ef3f50432

•  Response
200 OK
Content-Type: application/xml
Content-Length: ...
Last-Modified: 2007-07-08T15:00:34Z
Etag: aabd653b-65d0-74da-bc63-4bca-ba3ef3f50432

Client’s representaRon of 
the resource is up‐to‐date 

88 © ThoughtWorks 2008

SECURITY
Living life on the wild, wild, Web

© ThoughtWorks 2008 89

Good Ole’ HTTP Authentication

•  HTTP Basic and Digest Authentication: IETF RFC 2617
•  Have been around since 1996 (Basic)/1997 (Digest)
•  Pros:

–  Respects Web architecture:
•  stateless design (retransmit credentials)
•  headers and status codes are well understood

–  Does not prohibit caching (set Cache-Control to public)
•  Cons:

–  Basic Auth must be used with SSL/TLS (plaintext password)
–  Not ideal for the human Web – no standard logout
–  Only one-way authentication (client to server)

© ThoughtWorks 2008 90

HTTP Basic Auth Example

1.  Initial HTTP request to protected resource
GET /index.html HTTP/1.1
Host: example.org

2.  Server responds with
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm=”MyRealm”

3.  Client resubmits request
GET /index.html HTTP/1.1
Host: example.org
Authorization: Basic Qm9iCnBhc3N3b3JkCg==

Further requests with same or deeper path can include the
additional Authorization header preemptively

© ThoughtWorks 2008 91

HTTP Digest Difference

•  Server reply to first client request:
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest

 realm=myrealm@example.org,
 qop="auth,auth-int”,
 nonce=”a97d8b710244df0e8b11d0f600bfb0cdd2”,
 opaque=”8477c69c403ebaf9f0171e9517f347f2”

•  Client response to authentication challenge:
Authorization: Digest

 username="bob",
 realm=myrealm@example.org,
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/index.html",
 qop=auth, nc=00000001, cnonce="0a6f188f",
 response=”56bc2ae49393a65897450978507ff442",
 opaque="8477c69c403ebaf9f0171e9517f347f2"

© ThoughtWorks 2008 92

Unhealthy Cookies?

•  Form-based authentication on the human Web uses cookies
•  Can be used on the programmatic Web – POST to the

authentication URL
•  Server can (should!) inform client about intended cookie

lifetime
•  Cookie value often used as key to server session state

–  Breaks stateless constraint
–  Solution that does not require server side session state:

http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf

© ThoughtWorks 2008 93

SSL / TLS

•  “Strong” server and optional client authentication,
confidentiality and integrity protection

•  The only feasible way to secure against man-in-the-middle
attacks

•  Not broken! Even if some people like to claim otherwise
•  Not cache friendly, even using ‘null’ encryption mode
•  Performance and security becomes difficult

© ThoughtWorks 2008 94

OpenID

•  OpenID is a decentralised framework for digital identities
–  Not trust, just identity!

•  Your have an OpenID provider or one is provided for you
–  It has a URI

•  Services that you interact with will ask for that URI
•  Your OpenID provider will either:

–  Accept the request for processing immediately
–  Ask whether you trust the requesting site (e.g. via email with

hyperlinks)
•  Once your OpenID server OK’s the login, then you are

authenticated against the remote service
–  With your canonical credentials

AuthenRcaRng doesn’t 
mean you’re authorised to 

do anything!  
This is not a trust system! 

95 © ThoughtWorks 2008

OpenId Workflow

© ThoughtWorks 2008 96

MasterCard Online 
Merchant 

1. Send   
OpenID URL 

2. Redirect to  
IdenRty Provider 

3. Present OpenID 
credenRals (usually  
username and  
password) 

4. Redirect to  
Relying Party  

with security token 

5. Present security 
token 

Relying Party  Iden/ty Provider 

OAuth

•  Web-focused access delegation protocol
•  Give other Web-based services access to some of your

protected data without disclosing your credentials
•  Simple protocol based on HTTP redirection, cryptographic

hashes and digital signatures
•  Extends HTTP Authentication as the spec allows

–  Makes use of the same headers and status codes
–  These are understood by browsers and programmatic clients

•  Not dependent on OpenID, but can be used together

© ThoughtWorks 2008 97

Why OAuth?

© ThoughtWorks 2008 98

OAuth Workflow

© ThoughtWorks 2008 99

Insurance 
Provider 

Insurance 
Broker 

1. Request 
broken to obtain 
exisRng insurance  
policies from insurance provider 

4. Redirect to  
insurance provider 
with authorisaRon token 

5. Log in to 
insurance provider and 

supply authorisaRon token 

6. Authorise  
broker access to 
exisRng policies 

2. Request insurance policies Consumer  Service Provider 

User 

3. Reject with authorisaRon token 

OAuth Messages (1)

1.  Alice (the User) has accounts on both the insurance broker and
provider’s Web sites

2.  The insurance broker (Consumer) has registered itself at the
insurance company and has a Consumer Key and Secret

3.  Alice logs in to the broker and requests it to obtain her existing
policies from the provider

4.  Broker request to Insurance Provider:
GET /alice/policies HTTP 1.1
Host: insurance.org

5.  Insurance provider’s response:
401 Unauthorized
WWW-Authenticate: OAuth realm="http://insurance.org/"

© ThoughtWorks 2008 100

OAuth Messages (2)

6.  Broker requests authorisation token from Provider:
POST /request_token
oauth_consumer_key=abc&oauth_nonce=39kg&oauth_ ...

7.  Provider sends authorisation token in response body:
200 Success
oauth_token=xyz&oauth_token_secret=abc

8.  Broker redirects Alice to Provider in response to her request:
302 Redirect
Location: http://insurance.org/authorise?oauth_token=

 xyz&oauth_callback=http%3A%2F%2Fbroker.org&…

9.  Alice logs in to Insurance Provider using her credentials at that
site (the Broker never sees these) and authorises the Broker to
access her existing policies for a defined period of time.

© ThoughtWorks 2008 101

OAuth Messages (3)

10.  Insurance Provider redirects Alice to the callback URL:
302 Redirect
Location: http://broker.org/token_ready?oauth_token=xyz

11.  Broker knows Alice approved, it asks Provider for Access Token:
GET /accesstoken?oauth_consumer_key=abc&oauth_token=xyz
Host: insurance.org

12.  The Insurance Provider sends back the Access Token:
200 Success
oauth_token=zxcvb

13.  Broker creates hash or signature using access token, nonce,
timestamp, Consumer Key and Secret (and more):
GET /alice/policies HTTP 1.1
Host: insurance.org
Authorization: OAuth realm=“http://insurance.org/”,

 oauth_signature=“…”, oauth_consumer_key=“abc”, …

© ThoughtWorks 2008 102

SYNDICATION
How Atom and AtomPub make a mockery of your JMS

103 © ThoughtWorks 2008

Syndication History

•  Originally syndication used to provide feeds of information
–  Same information available on associated Web sites

•  Intended to be part of the "push" Web
–  And allow syndication etc

•  RSS was the primary driver here
–  Several versions, loosely described
•  Simple!

•  ATOM followed
–  Format and protocol
–  Richer than RSS and now being used for the programmatic Web

104 © ThoughtWorks 2008

Atom

•  Atom comes in two parts
–  XML vocabulary for lists of (time-stamped) entries
•  Aka feeds

–  Publishing protocol
•  A uniform interface that layers atop HTTP’s uniform interface

105 © ThoughtWorks 2008

Atom Feeds

•  Atom feeds contain useful information aimed at supporting
publishing
–  Its primary domain is weblogs, syndication, etc

•  Atom lists are known as feeds
•  Items in Atom lists are known as entries

106 © ThoughtWorks 2008

Feed Architecture

RSS Client 
(rich client, web 

app, etc) 

Public aggregator 

Company feed 

News feed 

Blog feed 

News feed 

Bank account 

Uniform 
interface! 

Uniform 
interface! 

107 © ThoughtWorks 2008

Anatomy of an Atom Feed

•  Media type: application/atom+xml
<?xml version="1.0" encoding="utf-8"/>

<feed xmlns="http://www.w3.org/2005/Atom">

 <title>Webber, Parastatidis, and Robinson book</title>

 <link rel="alternate"
 href="http://jim.webber.name/web.integration/"/>

 <updated>2007-07-01T13:00:44Z</updated>

 <author><name>Jim Webber</name></author>

 <contributor><name>Savas Parastatidis</name></contributor>

 <id>urn:ab45fe7e-7ff3-886c-11d2-7da3fe465322</id>

Feed metadata 

HTTP metadata 

108 © ThoughtWorks 2008

More Anatomy of an Atom Feed

 <entry>

 <title>Chapter 10 complete, says Webber</title>

 <link rel="service.edit" type="application/x.atom+xml"
 href="http://jim.webber.name/c10.aspx"/>

 <link rel="service.post" type="application/x.atom+xml"
 href="http://jim.webber.name/c10.aspx">

 <id>urn:dd64ef10-975d-23de-13fa-33d32117acb432</id>

 <updated>2007-07-01T13:00:44Z</updated>

 <summary>Chapter 10 deals with the comparison of Web and Web
Services approaches to building distributed applications.

 </summary>

 <category scheme="http://jim.webber.name/categories/books"
 term="local" label="book news"/>

 </entry>

</feed>

Atom API! 

109 © ThoughtWorks 2008

Atom Feeds Analogy

Resource 
Name 

Entry name 

Creator(s) 

Content 

LocaRon 

110 © ThoughtWorks 2008

Atom Feeds and Resources

•  Atom is just a resource representation
•  An Atom feed is a good resource representation for

returning resources in response to a query
–  As is XML, XHTML, RSS, JSON and others

111 © ThoughtWorks 2008

Atom Extensibility

•  Q: What if your resource representations don’t fit in Atom entries
directly?

•  A: Use your own data!
 <entry>
 <title>Chapter 10 complete, says Webber</title>
 ...
 <jw:openIssues xmlns:jw="http://jim.webber.name/jira">
 <jw:issue title="Colour diagrams degraded in BW format">
 <jw:status>closed</jw:closed>
 <jw:actionTaken date="2007-06-28T16:44:12Z">
 <jw:takenBy>savas@parastatidis.name</jw:takenBy>
 <jw:description>re-drew all diagrams</jw:description>
 </jw:actionTaken>
 </jw:issue>
 ...
 <jw:openIssues>
</entry>

This will be ignored if 
your client applicaRon 
doesn’t know the 

namespace 

112 © ThoughtWorks 2008

Atom Publishing Protocol

•  APP defines a set of resources that handle publishing Atom
documents
–  Four kinds of resources
•  Collection
•  Member
•  Service Document
•  Category Document

–  And their representations on the wire
•  Another uniform interface atop the HTTP uniform interface

113 © ThoughtWorks 2008

APP: Collections

•  Collection’s representation is an Atom feed
•  APP defines semantics for the collection representation

–  GET – retrieve the collection/feed
–  POST – adds a new member to the collection
•  Adds a new entry to the feed

–  PUT and DELETE undefined by APP
•  But probably should delete a collection or update a collection

in place respectively

114 © ThoughtWorks 2008

Consuming Feeds in Applications

•  Feeds on the Internet have so-far been used to optimise
the human Web
–  Site summaries, blog posting, etc

•  However feeds are a data structure
–  And so potentially machine-processable

•  Embedding machine-readable payloads means we have a
vehicle for computer-computer interaction

115 © ThoughtWorks 2008

