
© 2008 Carnegie Mellon University

Migration to Service Oriented

Architecture (SOA) with

Selected Research Challenges

Dennis Smith

ICSOC 2008

December 5, 2008

2

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

3

© 2008 Carnegie Mellon University

What is SOA?

Service-oriented architecture is a way of designing, developing, deploying

and managing systems, in which

• Services provide reusable business functionality.

• Service consumers are built using functionality from available services.

• Service interface definitions are first-class artifacts.

• An SOA infrastructure enables discovery, composition, and invocation of

services.

• Protocols are predominantly, but not exclusively, message-based document

exchanges.

50,000-Foot View: Basic Concepts

4

© 2008 Carnegie Mellon University

Components of a Service-Oriented System

End User

Application

Service

A

SOA Infrastructure

Enterprise

Information System

Portal

Internet

External

System

Service

B

Service

C

Service

D

Internal Users

DiscoverySecurity
Development

Tools

Legacy or New

Service Code

Internal

System

Service Consumers

Infrastructure

Service

Implementation

Service Interfaces

External

Consumer

50,000-Foot View: Basic Concepts

5

© 2008 Carnegie Mellon University

Challenges for Service Consumers

Available services might not meet functional and non-functional

requirements.

Services may change or disappear without notification.

Tools and programs provided by the infrastructure may conflict with

development environment.

Services may not be semantically correct from the consumer’s point of

view.

Services coming from different organizations can have inconsistencies

between them.

End-to-end testing would require test instances of all services to be

available.

1,000-Foot View

6

© 2008 Carnegie Mellon University

Challenges for Service Developers

If consumer requirements are not understood, services may never be

used.

The effort to translate legacy data types into data types that can be

transmitted in messages can be greater than expected.

If dealing with proprietary SOA environments, there may be

• Constraints imposed on developed services

• Dependencies on tools and programs provided by the infrastructure

that are in conflict with development tools

Guidance for using Service-Level Agreements (SLAs) is often not clear.

• Benefits of SLAs are not well quantified.

1,000-Foot View

7

© 2008 Carnegie Mellon University

Challenges for Infrastructure Developers

Changes in standards and products used in the infrastructure may have a

large impact on its users.

• Especially emerging standards

Effort for development, support, and training for the use of tools and

infrastructure may be underestimated.

1,000-Foot View

8

© 2008 Carnegie Mellon University

Web Services in the Context of Distributed
Systems

Distributed Systems

Service-Oriented

Systems

Web Services

Implemented using

Broker Architecture

Peer-to-Peer

Systems

WS*Web Services RESTful Web Services

….

Class of System

Architecture

Pattern

Technology

Pattern

Implementation CORBA

….

5,000-Foot View: Web Services

9

© 2008 Carnegie Mellon University

WS* Protocol Stack

The highlighted

standards are the most

commonly used.

Most WS* standards are

emerging and even

competing.

Security, QoS,

Transactions, and

Management have to be

addressed in all layers.

Discovery
UDDI

Description
WSDL

Message Format
SOAP

Encoding
XML

Transport
HTTP

S
e

c
u

rity

M
a

n
a

g
e

m
e

n
t

T
ra

n
s
a

c
tio

n
s

Q
u

a
lity

 o
f S

e
rv

ic
e

Orchestration and

Choreography
WSCL, WSCI, BPEL,

WS-Coordination

BPML, BPSS

Base

Stack

Adapted from ―XML and Web Services Unleashed‖, SAMS Publishing

5,000-Foot View: WS* Web Services

10

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

11

© 2008 Carnegie Mellon University

SOA Provides the Complete Architecture for a
System

SOA is an architectural pattern/style/paradigm and not the

architecture of the system itself.

An architectural pattern provides guidance that embodies best practices.

• The concrete elements and their interactions are the architecture of the

system.

Any number of systems can be developed based on an architectural

pattern.

• An architecture based on SOA inherits both the good and the bad.

Corollary: SOA cannot be bought off-the shelf.

• System qualities have to be built into the architecture of the

system.

• Decisions have to be made—service design and

implementation, technologies, tradeoffs.

50,000-Foot View: Common Misconceptions

12

© 2008 Carnegie Mellon University

The Use of Standards Guarantees Interoperability
in an SOA environment

Interoperability needs agreement on both syntax and semantics.

Web Services enable syntactic interoperability.

• XML Schema defines structure and data types.

• WSDL defines the interfaces: operations, parameters and return values.

• Available information, technologies, and tool support.

Web Services do not guarantee semantic interoperability.

• XML and WSDL do not define the meaning of data.

• WSDL does not define what a service does.

• It is an active research area—unresolved issues.

50,000-Foot View: Common Misconceptions

13

© 2008 Carnegie Mellon University

It Is Very Easy To Develop Applications Based on
Services

It is relatively easy to build applications and services that work with a
particular infrastructure . . . but designing a ―good‖ service might not be that
easy.

From a service provider perspective

• Not many best practices for designing services

— What is the right granularity?

— What is the right Quality of Service (QoS)? Can you guarantee it?

• Have to know and anticipate potential consumers and usage patterns

— ―If you build it they will come‖ – Can you afford this?

From a service consumer perspective

• Ease depends on tool availability for SOA infrastructure.

• Larger granularity may lead to larger incompatibilities.

• Most difficult part is composition—data and process mismatches.

50,000-Foot View: Common Misconceptions

14

© 2008 Carnegie Mellon University

A Service Registry Allows Service Binding
Dynamically at Runtime

Current technologies have not advanced to the point that this is

possible in production environments.

Requires the use of a common formal ontology by service providers and

consumers within a domain.

• Data model that represents a set of concepts within a domain and the

relationships between those concepts (from Wikipedia)

Requires the construction of intelligent service consumers that

• Construct the right queries for the discovery of services

• Compose services when there is not a single service that can process the

request

• Provide the right data to invoke a service that was discovered at runtime

50,000-Foot View: Common Misconceptions

15

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

16

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Service Granularity 1

The granularity of service interfaces can affect the end-to-end performance

of systems because services are executed across a network as an

exchange of a service request and a service response.

• If service interfaces are too coarse-grained, consumers will receive more

data than they need in their response message.

• If service interfaces are too fine-grained, consumers will have to make

multiple trips to the service to get all the data they need.

1,000-Foot View

17

© 2008 Carnegie Mellon University

… or all four operations can be
implemented where getCustomerInfo is a

composite service, but the individual
services are available as well.

Sample Consequences of Decisions:
Service Granularity 2

Order

Management

System

[Basic Info, Order History, Pending Orders]

getCustomerInfo(CustomerId)

The Order Management System can expose
the business functionality of getting all the

customer information in one call …

OrderHistory getOrderHistory(CustomerId)

CustInfo getCustBasicInfo(CustomerId)

Order[] getPendingOrders(CustomerId)

… or the service can be more granular and
provide three different operations for each

type of information

1,000-Foot View

18

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Requirements 1

If service developers do not understand functionality and QoS needs of

potential users of services, they might end up developing and deploying

services that are never used.

1,000-Foot View

19

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Requirements 2

Shipping

System 3

Schedule Pickup

Schedule Pickup

Track shipment

Schedule Pickup

Track shipment

Track Shipment

Shipping

System 2

Shipping

System 1

Get Quote

Get Quote
If Shipping System 1 does not

implement the Get Quote
functionality, consumers

cannot “automatically” decide
on the cheapest option.

This can result in potential
revenue loss for the shipping

system.

1,000-Foot View

20

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 1

The decision of where to assign responsibility for transaction management

has an effect on development.

Scenario

• Order Processing application needs to place an order.

• Three systems are involved

— The Order Management System controls order creation

— The Financial System contains customer financial information

— The Inventory System contains part information and stock

• An order is considered complete after the customer financial status is

verified and the parts in inventory are marked for shipment.

1,000-Foot View

21

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 2

Order

Management

System

 placeOrder

 Responsibility: Service Provider

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

 placeOrder

 markInventory  getFinancialInformation

1. Application
invokes

placeOrder
service.

4. Order Management
System invokes

getFinancialInformation.

2. Infrastructure
locates placeOrder

service.

3. Order Management
System starts
transaction.

5. Order Management
System invokes
markInventory.

6. Application
receives operation

status.

1,000-Foot View

NOTE: The service
provider may

decide to bypass
service interfaces
and call systems

directly.

22

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 3

Order

Management

System

 createOrder

 Responsibility: Infrastructure Provider

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

 placeOrder

 markInventory  getFinancialInformation

1. Application
invokes placeOrder

service.

3. Infrastructure invokes
getFinancialInformation.

2. Infrastructure is
aware that this is a

transactional
operation and starts

transaction.

5. Infrastructure
invokes createOrder.

4. Infrastructure invokes
markInventory.

6. Application
receives operation

status.

NOTE: Depending
on the

implementation,
operations may
require “undo”

operations.

1,000-Foot View

23

© 2008 Carnegie Mellon University

Sample Consequences of Decisions:
Transaction Management 4

Order

Management

System

 createOrder

 Responsibility: Service Consumer

SOA Infrastructure

Order

Processing

Application

Inventory

System

Financial

System

 getFinancialInformation

 markInventory

 createOrder

 markInventory  getFinancialInformation

2. Application
invokes all

three services.1. Application
starts transaction.

NOTE: Depending
on the

implementation,
operations may
require “undo”

operations.

1,000-Foot View

24

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

25

© 2008 Carnegie Mellon University

Approach

Assembled an international research group to analyze the current state of

the practice and current research initiatives in SOA

Proposed a long-term consensus research agenda

Performed an extensive literature review and looked at case studies of

successful SOA adoption

Created a service-oriented systems development lifecycle that supports

the strategic approach to SOA adoption shown in case studies

Identified areas of SOA research necessary to fill in the gaps

Evolved findings through multiple workshops

26

© 2008 Carnegie Mellon University

26

SOA Problem and Solution Space

Successful

SOA adoption

has a strong

link between

business

strategy and

SOA strategy

Domain Area Context Business Drivers

Service Strategy

E
n

g
in

e
e

ri
n

g

B
u

s
in

e
s

s

O
p

e
ra

ti
o

n
s

Solution Space

Planning Space

Problem Space

Cross-Cutting

27

© 2008 Carnegie Mellon University

Expanded View of the SOA Problem and Solution
Space

27

SOA strategy is

the way in which

SOA is going to

address the

organization's

business drivers

for SOA adoption

SOA plans are

executed to

produce a

service-oriented

system.

Feedback loops

reflect the dynamic

nature of service-

oriented

environments

The organization’s

domain area and

context enable and/or

constrain the SOA

strategy

Measurements

are gathered to

test the

effectiveness of

the strategy and

the system itself

Service Model Business Model

Plan Formulation

SOA Plans

Plan Execution

Service-Oriented

System

Evaluation/

Optimization

Domain Area Context Business Drivers

Solution Space

Planning Space

Problem Space

Strategy

Formulation

SOA Strategy

28

© 2008 Carnegie Mellon University

Relationship between Solution Space and
Research Topics

The development of a

service-oriented system

requires business,

engineering and operations

to be made, as well as other

cross-cutting decisions.

Our proposed taxonomy of

research topics is divided

into these decision areas.

The research topics correspond to areas where new/more/different

research is needed to support a strategic approach to service-oriented

systems development

Domain Area Context Business Drivers

Service Strategy

E
n

g
in

e
e

ri
n

g

B
u

s
in

e
s

s

O
p

e
ra

ti
o

n
s

Solution Space

Planning Space

Problem Space

Cross-Cutting

29

© 2008 Carnegie Mellon University

Taxonomy of Research Issues

30

© 2008 Carnegie Mellon University

Sample of Engineering Research Topics

30

SOA Multi-Level Testing:

Functional, Integration,

System

Simulation and ―What-If‖

Analysis in Service-

Oriented Environments

Service Provider Practices to

Support Testing of Service

Consumers

SOA Test Beds and

Benchmarks

Engineering

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

Service-Oriented System Life

Cycle Models

Development Processes and

Methodologies for Service-

Oriented Systems

31

© 2008 Carnegie Mellon University

Sample of Business Research Topics

31

Business

SOA Strategy Selection

Business Case for Service

Orientation

Mapping between Business

Processes and Services

Organizational Structures to

Support Service-Oriented

Environments

Business Indicators

Models for Organizational

Structures that Enable Service-

Oriented Systems Development

Skills Required to Develop, Use

and Maintain Service-Oriented

Systems

Models for Workforce Allocation in

Service-Oriented Systems

Projects

Organizational and Funding

Models for Shared Services

Techniques to Establish and

Document the Business

Case for SOA Adoption

32

© 2008 Carnegie Mellon University

Sample of Operations Research Topics

32

Operations

Adoption

Monitoring

Support

Operations Indicators

Service Usability

End-User Service Composition Tools

Models of Service Consumer Adoption

Pricing Models for Service Providers

Processes for Support of Service-

Oriented Systems

Front-end and Back-End Problem

Management in Service-Oriented

Environments

Service-Level Agreements in Service-

Oriented Environments

33

© 2008 Carnegie Mellon University

Sample of Cross-Cutting Research Topics

33

Cross-Cutting Techniques and Guidelines to Develop

SOA Governance

Enterprise-Wide vs. Local SOA

Governance

Techniques to Model Policy, Risk and

Trust in Support of SOA Governance

Automation

Design-Time and Runtime Validation

of Compliance with SOA Governance

Governance

Training and Education

Risk Management in

SOA Environments

Social and Legal Issues

Security
Identity Management in Multi-

Organizational SOA

Environments

 Secure Dynamic Service

Composition

Security Management in

Distributed SOA

Environments

Trust Establishment and Trust

Brokering

34

© 2008 Carnegie Mellon University

Research Topics in Maintenance and Evolution of
Service-Oriented Systems

What does maintenance and evolution look

like in this dynamic, heterogeneous and

potentially distributed development and

maintenance environment?

Engineering

Evolution Patterns of Service-Oriented

Systems

Tools for the Verification and

Validation of Compliance with

Constraints during Maintenance and

Evolution Activities

Round-Trip Engineering in Service-

Oriented Systems.

Tools, Techniques and

Environments to Support

Maintenance Activities

Multilanguage System Analysis

and Maintenance

Reengineering Processes for

Migration to SOA Environments

Short-Term Research

Issues

Long-Term Research

Issues

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

35

© 2008 Carnegie Mellon University

Research Topics in Maintenance and Evolution of
Service-Oriented Systems

What does maintenance and evolution look

like in this dynamic, heterogeneous and

potentially distributed development and

maintenance environment?

Engineering

Evolution Patterns of Service-Oriented

Systems

Tools for the Verification and

Validation of Compliance with

Constraints during Maintenance and

Evolution Activities

Round-Trip Engineering in Service-

Oriented Systems.

Tools, Techniques and

Environments to Support

Maintenance Activities

Multilanguage System Analysis

and Maintenance

Reengineering Processes for

Migration to SOA Environments

Short-Term Research

Issues

Long-Term Research

Issues

Process and Life Cycle

Requirements

Service Selection

Service Definition and Categorization

Technology Assessments

Architecture and Design

Code

Tools and Products

Quality Assurance and Testing

Deployment

Maintenance and Evolution

Engineering Indicators

36

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to
Support Maintenance Activities—Rationale 1

Complexity of the maintenance process in an SOA environment increases,

especially if there are external consumers and providers involved

• Impact analysis activities for service providers have to consider a potentially

unknown set of users

• Impact analysis for service implementation code has to consider direct

users of the service implementation code, as well as users of the service

interfaces

• Configuration management also becomes more complex, starting from the

decision of what to put under configuration management

• Release cycles between services and consumers, services and

infrastructure, and consumers and infrastructure ideally should be

coordinated, but may not be possible when these are external

37

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to
Support Maintenance Activities—Rationale 2

Another aspect that makes maintenance challenging is services that are

shared among multiple business processes or consumers

• Who is responsible for the maintenance of a shared service?

• What happens when multiple business units have different requirements for

the same service?

• How is a service evolved in the context of the multiple business processes

that use it?

38

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance Activities—Current Efforts 1

Not much work that specifically addresses or provides guidelines for

maintenance activities in SOA environments

Maintenance Processes

• SOA Life Cycles, such as the one proposed by IBM and others, include

maintenance in the post-deployment management phase of a very iterative

life cycle

• Mittal recommends the use of a robust development methodology the first

time the service-oriented is rolled out and the use of lighter methodologies

to support ongoing maintenance

• However, there is no concrete methodology for maintenance of service-

oriented systems

39

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance Activities—Current Efforts 3

Change Management and Version Control

• Area that has received a lot of attention from the research and vendor

community [Brown, Evdemon, Lhotaka, Lublisnky, Peltz, Robinson]

• Reason is that the stability of service interfaces is part of the agreement

(formal or informal) between service providers and consumers

• Usually refers to versioning of the service—mainly Web Services—and not

to other components of a service-oriented system

Organizational Structures and Roles

• Some preliminary research that is looking at roles and responsibilities for

development, maintenance and evolution of service-oriented systems

[Kajko-Mattsson]

40

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance Activities—Challenges and Gaps

Development of specialized methods and tools to support the maintenance

and evolution of large service-oriented systems is in the early stages

• Current efforts seem to indicate that maintenance activities for service-

oriented systems are not that different than in traditional systems

• However, we are still in the stage where most service-oriented systems are

deployed for internal integration, where there is still some control over

deployed services

Emergence of market for third-party services and the deployment of more

service-oriented systems that cross organizational boundaries will have to

change current maintenance practices

41

© 2008 Carnegie Mellon University

Tools, Techniques and Environments to Support
Maintenance Activities—Current Efforts 2

Change Impact Analysis

• Active area of work at different levels

— Top-down approach to analyze the impact of changes to business

processes all the way down to the source code to identify affected

system components [Xiao]

— Bottom-up approach is to analyze the impact of changes to a service—

or its implementation—on the business processes and other consumers

of the service [Zhang]

• Integrated development environments are starting to integrate impact

analysis, but the usual assumption is that there is control and full access to

all system elements

42

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Rationale

Migration of legacy systems to SOA environments has been achieved

within a number of domains, including banking, electronic payment, and

development tools, showing that the promise is beginning to be fulfilled

While migration can have significant value, any specific migration requires

a concrete analysis of the feasibility, risk and cost involved

The strategic identification and extraction of services from legacy code is

crucial as well

43

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Current Efforts 1

There are not many reengineering

techniques that focus on a ―full-circle‖

model, such as the "SOA-Migration

Horseshoe" proposed by Winter and

Ziemann

This approach integrates software

reengineering techniques with

business process modeling

44

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Current Efforts 2

The larger amount of work is on techniques in the ―bottom portion‖ of the

horseshoe for exposing legacy functionality as services, mainly Web

Services [Chawla]

Tools to support this type of migration are available as language libraries

and/or integrated into common IDEs such as the Eclipse WTP and the

.NET development environment, or as part of infrastructure products such

as Apache Axis

45

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Current Efforts 3

Some work on techniques and research proposals that take into

consideration business goals and drivers—these techniques work in the

―top portion‖ of the horseshoe

• Service Migration and Reuse Technique (SMART)—Output is a migration

strategy that includes preliminary estimates of cost and risk and a list of

migration issues [Lewis]

• Ziemann et. al. propose a business-driven legacy-to-SOA approach based

on enterprise modeling that considers both the business and legacy system

aspects

• IBM has a method called Service Oriented Modeling and Analysis (SOMA)

that focuses on full system development but has some portions that address

legacy reuse

• Cetin et. al. propose a mashup-based approach for migration of legacy

software to pervasive service-oriented computing platforms

46

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Current Efforts 4

There is work related to the identification of services in legacy code,

addressing the ―left portion‖ of the horseshoe

• In the context of Web Services, Aversano et. al. propose an approach that

combines information retrieval tracing with structural matching of the target

WSDL with existing methods

• Also in the context of Web Services, Sneed proposes an approach that

consists of salvaging the legacy code, wrapping the salvaged code and

making the code available as a web service

— In the salvaging step he proposes a technique for extracting services

based on identifying business rules that produce a desired result.

47

© 2008 Carnegie Mellon University

Reengineering Processes for Migration to
SOA Environments—Challenges and Gaps

The ideal reengineering process would be one that implements the SOA-

Migration Horseshoe
• Currently techniques and tools that implement portions of the horseshoe

but not the full horseshoe

• An important area of research would be the development of concrete

processes that implement the horseshoe and tools (or suites of tools) to

support the process

Real challenge is mining legacy code for services that have business

value
• Tools and techniques for analyzing large source code bases to discover

code that is of business value

• Metrics for "wrapability" and business value to determine reusability

[Sneed]

• Application of feature extraction techniques to service identification, given

that services usually correspond to features [Sneed]

48

© 2008 Carnegie Mellon University

Conclusions on Key Challenges 1

Engineering challenges are significant if SOA is to be used in ―advanced

ways‖

• Semantics

• Dynamic discovery and composition

• Real time applications

Main challenges for enterprise applications are related to business and

operations, and not engineering. As third-party services become the new

business model, there needs to be support for

• Service-level agreements

• Runtime monitoring

• End-to-end testing involving third parties

• Pricing models for third-party services

• Service usability—from a design and an adoption perspective

48

49

© 2008 Carnegie Mellon University

Conclusions on Maintenance and Evolution of
Service-Oriented Systems

In the short term, maintenance and evolution practices will have to evolve

and adapt to support this dynamic and changing environment, taking into

consideration the emergence of third-party services over which there is

less control and visibility

Good starting points

• Tools and techniques to support maintenance and evolution activities in

these environments

• Reengineering processes that combine business as well as technical

aspects

• Capabilities for multi-language analysis

50

© 2008 Carnegie Mellon University

Conclusions on Maintenance and Evolution of
Service-Oriented Systems

In the short term, maintenance and evolution practices will have to evolve

and adapt to support this dynamic and changing environment, taking into

consideration the emergence of third-party services over which there is

less control and visibility

Good starting points

• Tools and techniques to support maintenance and evolution activities in

these environments

• Reengineering processes that combine business as well as technical

aspects

• Capabilities for multi-language analysis

51

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

52

© 2008 Carnegie Mellon University

Pillars of Service-Oriented Systems Development

S
tra

te
g

ic

A
lig

n
m

e
n

t

SOA Design Principles

Service-Oriented

Systems Development

T
e

c
h

n
o

lo
g

y

E
v
a
lu

a
tio

n

S
O

A

G
o

v
e
rn

a
n

c
e

C
h

a
n

g
e
 o

f

M
in

d
s

e
t

Pillars

53

© 2008 Carnegie Mellon University

Different Business Needs and Goals Drive
Different SOA Strategies

Business Needs and Goals SOA Strategy

Increase information available to

business customers

• Intuitive portals

• Creation of services related to customer

information

Integrate business partners • Heterogeneous interoperability

• Back office integration

• Identification of business rules

Improve business processes • Identification of key processes

• Elimination of redundancy

• Consistency between processes

• Services that access legacy systems

Pillars: Strategic Alignment

54

© 2008 Carnegie Mellon University

Examples of Governance Elements

Governance elements adapted from a presentation by Dr Mohamad Afshar from Oracle Corporation and Ben Moreland from The Hartford at the

Business Transformation Conference 2007

Projects

Service Ownership

Service Lifecycle

Shared Artifacts

People

Roles & Responsibilities

Service and Process Owners

Financial

Service Funding Model

Service Usage Fees

Platform Funding

Portfolio

Projects

Business Services

Applications Technology

Strategic SOA Platform

Enforcement Platform Decisions

Shared Infrastructure Services

Information

Data Ownership

Data Standards

Data Quality

Architecture

Reference Architectures

Architectural Standards

Blueprints & Patterns

Operations

Capacity Planning

Enforcement Service Levels

Enforcement Policies

Metrics Collection

Business

Engineering

Operations

Pillars: SOA Governance

55

© 2008 Carnegie Mellon University

Design-Time Governance

Because of the wide number of potential services, develop decision rules

for guiding development of services that

• Are closely aligned with business goals

• Have greatest impact with least risk

Enforce consistency in

• Use of standards

• Access to the infrastructure

• Processes

Manage reuse by enforcing

• Systematic evaluation of migration feasibility

• Consistent approach to legacy component migration

Pillars: SOA Governance

56

© 2008 Carnegie Mellon University

Runtime Governance

Policy enforcement rules relative to

• Execution of services only in ways that are legal

• Security, especially to account for new access points to systems and data

• Replacement of services

• Consistency in interaction with SOA infrastructure

Service level agreements (SLAs)

• Runtime validation of promises made in SLAs

— Performance, throughput, availability

• Automated metrics, tracking, and reporting

— Frequency of use of services

— Identification of exceptions to policies

— Identification of problem areas

• Problem management

Pillars: SOA Governance

57

© 2008 Carnegie Mellon University

Examples of SOA-Related Metrics

Measurements are used to adjust the SOA strategy

• Effort to develop services

• Effort to reuse services from legacy assets

• Service usage

• Change history

• Policy waiver requests

• Policy violations

• Service performance

Pillars: SOA Governance

58

© 2008 Carnegie Mellon University

Match of Technologies to the Problem Domain

Need a realistic understanding on what technologies can do in the specific

problem domain

How to understand and keep up with the ―alphabet soup‖?

• XML, SOAP, WSDL, UDDI, WS-Security?

How to determine which standards and technologies to implement in

specific situations?

How to build systems that are resilient to changes in standards and

commercial products that implement them?

Pillars: Technology Evaluation

59

© 2008 Carnegie Mellon University

T-CheckSM

Experiment, situated in a specific context,

with the goal of providing a ―technology

sanity check‖

The approach

1. Formulate hypotheses about the technology

2. Examine these hypotheses against very

specific criteria through experimentation

Extremely efficient

• Focus on implementing the simplest

experiment to validate technology claims

Pillars: Technology Evaluation

Develop

Hypotheses

Develop

Criteria

Design and

Implement Solution

Evaluate Solution

Against Criteria

[Hypotheses Sustained] [Hypotheses Refuted]

Context

60

© 2008 Carnegie Mellon University

Benefits of Contextual Experimentation

Context framing provides for more realistic evaluations

Clear hypothesis and criteria avoid time wasted ―playing‖ with technologies

Simplicity of experiments allows early insight into technologies without a

huge investment

Other benefits

• Early competence development of people conducting the experiments

• ―Side knowledge‖—available support, communities, common problems,

adoption risks, etc.

Pillars: Technology Evaluation

61

© 2008 Carnegie Mellon University

Service-Oriented Systems Require a Different
Development Approach

Pillars: Change of Mindset

Traditional Systems

Development

Service-Oriented Systems

Development

Tight coupling between system

components

Loose coupling between service

consumers and services

Semantics shared explicitly at

design time

Semantics shared without much

communication between developers

of consumers and services

—In the future, even at runtime

Known set of users and usage

patterns

Potentially unknown set of users and

usage patterns

System components owned by

the same organization

Systems components potentially

owned by multiple organizations

62

© 2008 Carnegie Mellon University

Some Implications for Requirements Activities

Require an business process management (BPM) focus

Must deal with a larger number of stakeholders

First step is to look at the inventory of business processes

and services

• Negotiation and adaptation to increase reuse

• May cause refactoring of services

• A high quality registry makes the process easier

In the case of service providers, these need to work with

potential requirements

• In the same way COTS product vendors work

Pillars: Change of Mindset

63

© 2008 Carnegie Mellon University

Some Implications for Architecture and Design
Activities

The responsibilities of each system component need to be clearly

defined—consumers, services and infrastructure

• Security, transaction management, data transformations, etc.

Constant technology evaluation

Evaluation of expected quality of service (QoS)

• Tradeoff analysis

• Contextual experimentation

• Implications of external consumers and services

Decisions must promote reuse

Pillars: Change of Mindset

64

© 2008 Carnegie Mellon University

Some Implications for Development Activities

Development environments need to be similar/same as

production environments—as in any distributed system

environment

• In some cases, the simulation of the production

environment might be necessary

The emergent characteristics of many SOA technologies

cause instability in development activities

Require the establishment of processes for the

implementation of service interfaces and infrastructure

components

• Traditional processes apply to service implementation

Pillars: Change of Mindset

65

© 2008 Carnegie Mellon University

Some Implications for Testing Activities

System testing of a service consumer requires all services (or test

instances of them) to be available

• From a service consumer perspective, the service is a black box

Requires greater and more diverse exception handling

• For example, what happens if the service is not available?

Regression tests have to evaluate against all consumer requirements and

service-level agreements (SLAs)

Pillars: Change of Mindset

66

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

67

© 2008 Carnegie Mellon University

Reuse Challenges

Reuse at the service level is more complex than reuse at the module or

component level.

• From the service provider perspective

— Designing reusable services requires a different approach, skill set, and

mindset

— Bigger stakeholder community because services are typically reused at

organization and sub-organization level

— Services need to be as generic as possible so that they are of interest

to multiple service consumers and at the same time need to add value

to potential consumers

• From the service consumer perspective

— Larger granularity may lead to larger incompatibilities

Legacy System Challenges

68

© 2008 Carnegie Mellon University

Legacy System Challenges

It may not always be possible to reuse functionality of legacy systems by

exposing them as services.

• Technical constraints due to the nature of the legacy system

— A batch system needs to be exposed as a service for an interactive

online Web application.

• Immature technology or lack of technology for a particular legacy

environment

Cost of exposing a legacy system as services may be higher than

replacing it with a new service-oriented system.

Legacy System Challenges

69

© 2008 Carnegie Mellon University

Examples of Challenging Legacy System
Characteristics

Poor separation of concerns

• User interface code tightly coupled with business function code

Tool availability

• Target is Web Services; XML and SOAP libraries are not available for all
legacy platforms.

Architectural mismatch

• The asynchronous call to the service might be in conflict with legacy system
synchronous behavior.

Operational mismatch

• The legacy system is batch-oriented, the service user expects an
immediate response.

Dependencies on commercial products

• Licensing issues?

Legacy System Challenges

70

© 2008 Carnegie Mellon University

Addressing Legacy System Challenges

Identify relevant and non-relevant legacy components.

• Not all legacy components can be meaningfully reused as services—from a

strategic and a technical perspective.

Make decisions based on ―hands-on,‖ contextual analysis.

• System-specific analysis is important because every system is unique.

• Previous analysis and results can be used a guidelines.

Estimate cost, risk, and confidence of estimates of changes required to

each legacy component.

Legacy System Challenges

71

© 2008 Carnegie Mellon University

Migration to SOA Environments: A Potentially
Complex Engineering Task

The characteristics of SOA enable the exposure of legacy system

functionality as services.

• Presumably without making significant changes to the legacy systems

The complexity of the migration will largely depend on the characteristics

of the SOA environment—some examples:

• User community

• SOA infrastructure technology

• SOA strategy

• Operations

SOA Challenges

72

© 2008 Carnegie Mellon University

Operations

A stand-alone system can become a component of a system of systems

by exposing services.

• Startup procedures

• Policies for communication of changes and updates to internal and service

consumers

• Potential for

— Conflicting requirements—two sets of customers

— More complex change management procedures

— Performance degradation—more customers

SOA Challenges

Service

Enterprise

Information System
Internal Users

Service Consumers

73

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

74

© 2008 Carnegie Mellon University

SMART Goals

SMART analyzes the viability of reusing legacy components as the basis

for services by answering these questions:

• Does it make sense to migrate the legacy system to services?

• What services make sense to develop?

• What components can be used to implement these services?

• What changes are needed to accomplish the migration?

• What migration strategies are most appropriate?

• What are the preliminary estimates of cost and risk?

SMART: Introduction

75

© 2008 Carnegie Mellon University

The SMART Family

SMART

SMART-SMF

Service Migration Feasibility

Helps an organization establish the

feasibility of migration to an SOA

environment and creates a high-

level migration strategy if it is

feasible

SMART-MP

Migration Pilot

Helps an organization select a pilot

project that includes a migration

strategy with understanding of costs

and risks involved

SMART-ESP

Enterprise Service Portfolio

Helps an organization select and

create services from its systems

portfolio

SMART-ENV

SOA Environment

Helps an organization

understand a target SOA

environment in detail, including

associated costs and risks of

migrating to that environment

SMART-SYS

SOA-Based Systems Development

Helps an organization understand a

complete SOA-based system—services,

consumers, environment—including risk

and cost data

76

© 2008 Carnegie Mellon University

Why a SMART Family? 1

The pre-requisite of the current SMART is the identification of a target

SOA environment

Reality is that

• Many organizations are at earlier stages in the SOA adoption process

• There are multiple entry points to SOA adoption

We have begun to identify variations on the SMART process to deal with

these differences

The members of the SMART Family follow the same process described

earlier, but the emphasis is on certain activities in the process where the

SMIG has been enhanced to go into more detail in specific areas

SMART Family

77

© 2008 Carnegie Mellon University

Four Elements of SMART

Process

Service

Migration

Interview

Guide (SMIG)

SMART Tool Artifacts

Gathers

information about

• Goals and

expectations of

migration effort

• Candidate

services

• Legacy

components

• Target SOA

environment

Analyzes gap

between legacy

and target state

Guides discussions

in initial SMART

activities

Automates data

collection

Identifies potential

risks from data

base

• Stakeholder List

• Characteristics List

• Migration Issues List

• Business Process-

Service Mapping

• Service Table

• Component Table

• Notional SOA-Based

System Architecture

• Service-Component

Alternatives

• Migration Strategy

SMART: Elements

78

© 2008 Carnegie Mellon University

Service Migration Interview Guide (SMIG)

62 categories of questions that gather information about the migration

context, the legacy components, the candidate services, and the target

SOA environment

SMART: SMIG

The goal is to assure

broad and consistent

coverage of the factors

that influence the cost,

effort, and risk in

migration to services.

Guides

information

gathering for the

first set of

activities

Establish

Migration

Context

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

Migration

Feasible?
No

Define

Candidate

Services

YesYes

79

© 2008 Carnegie Mellon University

SMART Tool

Supports information gathering and analysis activities of SMART

• SMIG is implemented as a data model that maps questions to answers to

risks to mitigation strategies

Produces draft migration strategy and migration issues list

Consolidates data from a single engagement for information sharing and

analysis

Consolidates data from multiple engagements for trend analysis

SMART Tool

80

© 2008 Carnegie Mellon University

SMART Tool Components

SMART Client

• Java application built using Eclipse RCP

• Runs in offline mode during an engagement

• Uploads data to the SMART Server for consolidation

• Reporting capability

SMART Server

• Web application with an underlying MySQL database

• Runs on an organization’s server

• Enables SMIG maintenance, engagement setup, user

maintenance, export/import SMIG, reports

SMART Tool

81

© 2008 Carnegie Mellon University

SMIG Data Model

Category Question
Potential

Answers

Potential

Risk

Mitigation

Strategy

1..* 0..*

0..*

1..*
The data model is the

codification of our

experience in migration

to SOA environments

SMART Tool

82

© 2008 Carnegie Mellon University

SMART Client – Interview Perspective

The SMIG is

presented to the

facilitator for

reference during the

engagement

A search capability

allows the facilitator to

find questions quickly

Questions can be tagged to

indicate elements of

importance during the

engagement such as the need

to revisit, major area of risk,

and any other custom tags

defined for the engagement.

The status of the

engagement is constantly

calculated based on the

number of questions that

have been answered in

each category.

As questions are

answered, risks

are identified and

shown on the

screen.

A list of overall risks is

shown in the bottom

portion of the screen

for reference.

SMART Tool

83

© 2008 Carnegie Mellon University

SMART Process Activities

SMART: Process Activities

Establish

Migration

Context

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

Migration

Feasible?
No

Define

Candidate

Services

YesYes

84

© 2008 Carnegie Mellon University

Establish Migration Context

Understand the business and

technical context for migration

Identify stakeholders

Understand legacy system and target

SOA environment at a high level

Identify a set of candidate services for

migration

SMART: Establish Migration Context

Establish

Migration

Context

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

Migration

Feasible?
No

Define

Candidate

Services

YesYes

85

© 2008 Carnegie Mellon University

Understand Business and Technical Context

Understand rationale, goals, and

expectations for migration to an SOA

environment

Understand technical and business

drivers

Understand project constraints (e.g.

schedule, budget)

Gain knowledge about previous

related efforts or analyses

SMART: Establish Migration Context

86

© 2008 Carnegie Mellon University

Establish Migration Context: SMIG Examples

Discussion

Topic

Related Questions Potential Migration Issues

Goal and

Expectations

of Migration

Effort

• What are the business and technical drivers

for the migration effort?

• What are the short-term and long-term

goals?

• No SOA strategy

• Goals for migration are not clear.

High-Level

Understanding

of Legacy

System

• What is the main functionality provided by

the legacy system?

• What is the high-level architecture of the

system?

• What is the current user interface to the

system?

• Legacy system knowledge is not

available.

• Architectural mismatch

• User interface complexity hard to

replicate in service consumers

High-Level

Understanding

of Target SOA

Environment

• What are the main components in the target

SOA environment?

• Is this the organization’s first attempt to

deploy services in this environment?

• Target SOA environment has not

been identified.

• No in-house knowledge of target

SOA environment

Potential

Service

Consumers

• Who are the potential service consumers? • Consumers for services have not

been identified.

SMART: Establish Migration Context

87

© 2008 Carnegie Mellon University

Example Context: Laboratory Information System
(LIS)

Patient

Clinic

(Outpatient)

Doctor Visit

Hospital (Inpatient)

Hospital Admission

Laboratory

Information

System

Order Test

Order Test

Billing

Information

Insurance

Company

Aggregate Data for

Research and

Analysis

Research

Organization /

Public Health

Agency

Results

Patient

Portal

Patient

Data

Patient

Data

Results

Results

SMART Exercises: Context

88

© 2008 Carnegie Mellon University

Example Context: LIS Context Diagram

Lab information shared

between many systems

Need to move to a SOA

environment to increase

reusability of common lab

tasks

Key questions:

1. Which services should be

created?

2. In what order?

3. Should some legacy

components be replaced

with new components?

LIS

Inpatient

System

Outpatient

System

Research and

Public Health

Agency System

Patient

Information

Online

Insurance

System

SMART

Engagement

Scope

SMART Example Context

89

© 2008 Carnegie Mellon University

LIS: Drivers for Legacy Migration

Improve patient care by

• Providing access to lab information from any clinical system in real time

(current access is mostly batch-oriented)

• Making lab information accessible to patients via the Internet using a

patient portal

Reduce IT costs by

• Creating common and reusable services

• Reducing the number of different interaction points (interfaces)

• Lowering maintenance and upgrade costs

SMART Exercises: Establish Migration Context

90

© 2008 Carnegie Mellon University

LIS: Legacy System at a High Level

Laboratory Information System (LIS)

• 800,000 lines of code

• Six major modules—~2500 C++ classes and ~1500 Java classes

— Lab Test Catalog module is written in Java but is actually a wrapper to a legacy

COBOL system

• Some components run on Windows operating system and some on Linux OS

Interaction with external systems is point-to-point through dedicated sockets

• Some data transfers are done in batch mode overnight (i.e., lab results)

• Not all exchanged information uses the same version of HL7 (V3 vs. V2.X)

Dependencies on several commercial products

• Oracle Database

• Weblogic Application Server

SMART Exercises: Establish Migration Context

91

© 2008 Carnegie Mellon University

Checkpoint for Migration Feasibility

Decision to continue with the

process has to be made.

Potential outcomes at this point are

• The migration is initially feasible.

• The migration has potential but

requires additional information to

make an informed decision.

• The migration is not feasible.

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

Migration

Feasible?
No

Define

Candidate

Services

YesYes

Establish

Migration

Context

SMART: Migration Feasibility Checkpoint

92

© 2008 Carnegie Mellon University

Define Candidate Services

Select a small number of services,

usually 3-4, from the initial list of

candidate services

For these candidate services, the end

goal is to fully specify inputs and

outputs

SMART: Define Candidate Services

Define

Candidate

Services

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

YesYes

Establish

Migration

Context

Migration

Feasible?
No

93

© 2008 Carnegie Mellon University

Initial Business Process-Service Mapping

Business Process Candidate Services

Search Lab Test Catalog Get Test Catalog, Get Test Details

Order/Re-order Test Get Test Catalog, Get Patient Information, Get Test Details,

Create Lab Test Order

Track Status of Tests Get Patient Information, Get Test Details

Provide Billing Information Get Patient Information, Get Test Details

Review and Report Test

Results

Get Patient Information, Get Test Details, Get Test Results

Analysis and Mining for

Trends

Get Test Details, Get Aggregate Test Results

SMART Exercise 2: Define Candidate Services

NOTE: This table was created during Establish Migration Context

94

© 2008 Carnegie Mellon University

Initial Service Table

SMART Exercise 2: Define Candidate Services

NOTE: By the end of this iterative process, inputs and outputs should include data types.

Service Description Type
Potential
Service

Consumers

Get Test Results
Obtains detailed test results either for one patient
or for all the patients for which tests were
completed on a day for a particular location

Business EMR Systems

Get Test Catalog
Obtains the catalog of tests provided by the clinical
lab

Business EMR systems

Data Format Service
Formats message according to a given version of
HL7 Infrastructure

Internal services

and applications

… … … …

Service Inputs Outputs
Key Quality Attribute

Requirements
…

Get Test Results

Patient ID (s)

Test ID

Location ID

Date

Test Result Details Security

Get Test Catalog Test type(s) Test catalog Configurability

Data Format Service Data, HL7 version HL7-Formatted Data Interoperability

… … … … …

95

© 2008 Carnegie Mellon University

Describe Existing Capability

SMART: Describe Existing Capability

Describe

Existing

Capability

Define

Candidate

Services

Describe

Target SOA

Environment

Analyze the

Gap

Develop

Migration

Strategy

Establish

Migration

Context

Migration

Feasible?
No

Yes

Obtain descriptive data about legacy
components

• Name, function, size, language, operating
platform, age of legacy components, etc.

Question technical personnel about

• Architecture and design paradigms

• Complexity, coupling, interfaces

• Quality of documentation

• Component/product dependencies

Gather data about

• Quality, maturity, existing problems

• Change history

• User satisfaction

96

© 2008 Carnegie Mellon University

Describe Existing Capability: SMIG Examples

Discussion

Topic

Related Questions Potential Migration Issues

Legacy System

Characteristics

• What is the history of the system?

• Is the system a proof of concept, prototype, under

development, in testing, or a fielded system?

• What system documentation is available?

• Does the system have interfaces to other

systems?

• What are potential locking, persistence, or

transaction problems if accessed by multiple users

when migrated to services?

• Planned development concurrent with

service migration

• Limited system documentation

• Interfaces to other systems will open

doors to service consumers.

• Single-user system may have problems

in a multi-user environment.

Legacy System

Architecture

• What architecture views are available?

• What are the major modules of the system and

dependencies between modules?

• Is user interface code separate from the business

logic code?

• Are there any design paradigms or patterns

implemented in the system?

• What are the key quality attributes built into the

current architecture of the system?

• Lack of architecture documentation

may lead to underestimation of

complexity.

• Tight coupling between user interface

code and business logic code

increases effort.

• Undocumented violations of design

patterns may cause problems.

• Key quality attributes may not hold true

in a services environment.

Code

Characteristics

• What code documentation is available?

• What coding standards are followed?

• Poor coding practices will increase

migration effort.

SMART: Describe Existing Capability

97

© 2008 Carnegie Mellon University

LIS: Updated Characteristics List

Description

Services

Hard coded policies/rules

Language

Platform

Java

C++

Perl

Wrapper component

…
…

Direct calls to UI

New

New

COTS product dependencies

SMART Exercises: Describe Existing Capability

Calls to UI code
will have to be
identified and
removed from
service code

Given the desire to
centralize policies
and rules, code
corresponding to
policies and rules will
have to be moved
and replaced by the
appropriate calls.

B
a
s
ic

 C
h
a
ra

c
te

ri
s
ti
c
s

C
o
n
te

x
t-

S
p
e
c
if
ic

C
h
a
ra

c
te

ri
s
ti
c
s

98

© 2008 Carnegie Mellon University

LIS: Component Table

Describe Existing Capability

Component Description Services Language Platform
Size

(SLOC)

LabTestCatalog
Manages the catalog of
all available lab tests

Get Test Catalog, Get
Test Details, Create Lab
Test Order

Java Linux 1,000

ResultsProcessor

Contains business rules
for processing test
results and providing
processed results to
external systems

Get Test Results,
Get Aggregate Test
Results

C++, Java,
Perl

Unix,
Windows

XP
8,000

Component Complexity Version
Level of

Documentation
Last Release

Date

LabTestCatalog Medium 5.6 High 02/10/2005

ResultsProcessor Very High 8.2 Medium 06/01/2005

Component
Wrapper

Component
COTS Product Dependencies

Direct

Calls to UI

Hard-coded

Policies and Rules

LabTestCatalog Yes 3rd party libraries, HL7 v2.3 No No

ResultsProcessor No
Oracle database, Weblogic

Application Server
Yes Yes

99

© 2008 Carnegie Mellon University

LIS: Module View

Order

Processing

Lab Test

Catalog

Archival

(Orders, Tests)

Lab

Samples/Test

Management

System

Test Results

Processing

and Reporting

Billing

Inpatient

System

Outpatient

System

Research and

Public Health

System

Patient

Information

Online

Insurance

Lab Information System

C++ Java Different interface
implementation for

each system

Different versions of
HL7 (not all XML-

based)

Performed daily as
a batch operation

Communicates to external
systems via dedicated
connections (sockets)

Describe Existing Capability

100

© 2008 Carnegie Mellon University

LIS: Additional Migration Issues

Description: All service consumers do not plan to move to the

XML-compliant version of HL7.

Description: Some legacy components are designed only for

batch operations. . . .

Description: Some legacy components have direct calls to UI

embedded in the core business logic of the code.

Type: Technical Impact: Medium

Description: Different data filtering policies are applied to the

same data depending on the interacting external system.
Type: Business, Policy Impact: High

New

New

Describe Existing Capability

101

© 2008 Carnegie Mellon University

Describe Target SOA Environment

Describe

Target SOA

Environment

Define

Candidate

Services

Describe

Existing

Capability

Analyze the

Gap

Develop

Migration

Strategy

Establish

Migration

Context

Migration

Feasible?
No

Yes

• Identify the impact of specific

technologies, standards, and

guidelines for service

implementation

• Determine state of target SOA

environment

• Identify how services would

interact with the SOA

environment

• Determine QoS expectations

and execution environment for

services

SMART: Describe Target SOA Environment

102

© 2008 Carnegie Mellon University

Describe Target SOA Environment: SMIG
Examples

Discussion

Topic

Related Questions Potential Migration Issues

SOA

Environment

Characteristics

• What is the status of the target SOA environment?

• What are the major components of the SOA

infrastructure?

• Does the target SOA environment provide

infrastructure services (i.e., communication,

discovery, security, data storage)?

• What is the communication model?

• What constraints does the target SOA environment

impose on services?

• Does the legacy system have any behavior that

would be incompatible with the target SOA

environment?

• Once developed, where will services execute?

• Target SOA environment undefined

• Redundancy/conflicts between

infrastructure services and legacy code

• Lack of tools to support legacy code

migration to target infrastructure

• Compliance with constraints requires

major effort.

• Architectural mismatch

• No thought given to service deployment

and execution

Support • Do you have to provide automated test scripts for

the services and make them publicly available?

• How will service consumers report problems and

provide feedback?

• How will service consumers be informed of

potential changes in service interfaces and

downtime due to upgrades or problems?

• Underestimation of effort to provide

service consumer support

• Lack of awareness of support

requirements

SMART: Describe Target SOA Environment

103

© 2008 Carnegie Mellon University

LIS: Updated Characteristics List

Description

Services

Hard-coded policies/rules

Language

Platform

Java

C++

Perl

Wrapper Component

…

Direct calls to UI

COTS product dependencies

Security Requirement Level

Updated Detailed Design

New

New

B
a
s
ic

 C
h
a
ra

c
te

ri
s
ti
c
s

C
o
n
te

x
t-

S
p
e
c
if
ic

C
h
a
ra

c
te

ri
s
ti
c
s

Describe Target SOA Environment

Detailed design
documentation
has not been
kept up-to-date
in many cases.

Some of the data
managed by the system
is highly confidential or
its visibility depends on
the role.

104

© 2008 Carnegie Mellon University

LIS: Updated Component Table

Component Description Services Language Platform
Size

(SLOC)
Complexity

LabTestCatalog
Manages the catalog of
all available lab tests

Get Test Catalog,
Create Order

Java Linux 1,000 Medium

ResultsProcessor

Contains business rules
for processing test results
and providing processed
results to external
systems

Get Test Results,
Get Aggregate Test
Results

Java, C++,
Perl

Unix,
Windows

XP
8,000 Very High

Component Version
Level of

Documentation
Last Release

Date

Wrapper

Component

COTS Product

Dependencies

LabTestCatalog 5.6 High 02/10/2005 Yes 3rd party libraries, HL7 v2.3

ResultsProcessor 8.2 Medium 06/01/2005 No
Oracle database, Weblogic

Application Server

Component

Direct

Calls to

UI

Hard-coded

Policies and Rules

Security Level

Requirement

Updated Detailed

Design

LabTestCatalog No No Low No

ResultsProcessor Yes Yes High Yes

Describe Target SOA Environment

105

© 2008 Carnegie Mellon University

LIS: Target SOA Environment Constraints

Services need to support different versions of the HL7 standard.

• Patient Portal will use the XML-complaint v3 version of HL7.

• EMR systems (Outpatient, Inpatient) plan to move to HL7 v3 in near term

while others do not have any plans.

Services need to take into account the different policy requirements for the

same data.

• Research data should be completely anonymous (without any Personally

Identifiable Information – PII).

• Inpatient/outpatient data should be completely identifiable for each patient.

Describe Target SOA Environment

106

© 2008 Carnegie Mellon University

LIS: Important Infrastructure Services

Policy Manager

• Centralizes the configuration, deployment, change management and
storage of policies

Infrastructure Data Transfer Service

• Used by all the business services to transfer and receive data from external
systems

Infrastructure Security Service

• Provides secure transmission of confidential data

• Provides authorization and authentication services

Infrastructure Data Format Service

• Formats messages according to HL7 v2.x or HL7 v3 as needed by
business services and applications

Describe Target SOA Environment

107

© 2008 Carnegie Mellon University

LIS: Notional Service-Oriented System
Architecture

Research

And Public

Health System

Create

Lab Test

Order

Service

Security

Service

Get Test

Results

Service

Get

Aggregate

Test

Results

Service

Enterprise Service Bus (ESB)

Order

Processing

Test Results

Processing and

Reporting

Inpatient

System

Outpatient

System

Insurance

Company

System

Data

Transfer

Service

Data

Format

Service

Patient Portal

Policy

Manager

…

SMART Exercises: Describe Target SOA Environment

108

© 2008 Carnegie Mellon University

Analyze the Gap

• Define effort, risk, and cost to

convert legacy components

into services, given candidate

service requirements and

target SOA characteristics

• Determine need for additional

analyses

Analyze the

Gap

Define

Candidate

Services

Describe

Existing

Capability

Describe

Target SOA

Environment

Develop

Migration

Strategy

Establish

Migration

Context

Migration

Feasible?
No

Yes

SMART: Analyze the Gap

109

© 2008 Carnegie Mellon University

LIS: Updated Component Table

Analyze the Gap

Component … …
Migration
Method

Summary of Changes Required
Effort

(Person-
Weeks)

Cost
Level of
Difficulty

Level of
Risk

LabTestCatalog

Wrapping 1. Create an interface that provides the

business methods for searching the lab

test catalog based on various criteria.

2. Wrap and reuse the existing logic present

in the LabTestCatalog component by

calling the appropriate method.

3 Low Low

ResultsProcessor

Extraction +
New

1. Create an interface that provides the

necessary business methods for getting

the test results based on input criteria

such as patient id, order number etc.

2. Reuse the business rules inside the

ResultsProcessor by wrapping and

modifying subcomponent code to comply

with the new service interface.

3. Create code for the interface methods

that are not provided by the

ResultsProcessor subcomponent.

4. Add input validation code.

5. Add missing input elements to the

TestResults data structure.

6. …

15 Medium Medium

110

© 2008 Carnegie Mellon University

LIS: Analyses Performed

Given the lack of architectural documentation and the lack of confidence in

the estimates, two analyses were performed:

• Informal evaluation of code quality

— No consistent coding standards in force

— Parts of the code had little cohesion

— Awkward and non-standard class/modules organization

• Architectural reconstruction to gain a better understanding of code

dependencies when the SMART team found discrepancies

SMART Exercises: Analyze the Gap

111

© 2008 Carnegie Mellon University

LIS: Service-Component Alternatives

Service Options Components
Effort

(Person-
Weeks)

Cost
Level of
Difficulty

Level of
Risk

Get Test Catalog

Create interface to
LabTestCatalog
component

LabTestCatalog 3 $ 9,375 Low Low

Rewrite code wrapped
by LabTestCatalog
component in Java

15 $ 46,875 High Medium

Get Test Results

Create interface to
ResultsProcessor
components … … … … …

…

Analyze the Gap

112

© 2008 Carnegie Mellon University

Develop Migration Strategy

Develop one or more migration

strategies that may include

• Order in which to create services

• Guidelines for creation of services

• Service reference architectures

• Source of service code

(legacy, COTS, external

services, etc.)

• Mechanism—wrapping,

rewriting, extraction, new

• Specific migration paths to follow

(e.g., wrap first and rewrite later)

• Needs for training, technology

evaluation, market research, etc.
Develop

Migration

Strategy

Define

Candidate

Services

Describe

Existing

Capability

Describe

Target SOA

Environment

Analyze the

Gap

Establish

Migration

Context

Migration

Feasible?
No

Yes

SMART: Develop Migration Strategy

113

© 2008 Carnegie Mellon University

Stakeholder Workshop

Rationale. There are a large number of stakeholders that will be affected

by migration of LIS to services. The workshop will help to obtain buy-in for

migration.

Goal of the workshop is to

• Share LIS migration plans

• Reach agreement on

— Timetable for service release schedule

— Phase-out plan for LIS legacy components supporting current

interactions to be replaced by services

• Gather service consumer needs

• Discuss any support to be provided by LIS for use of LIS services

• Start the governance discussion

SMART Exercise 3: Develop Migration Strategy

114

© 2008 Carnegie Mellon University

Initial ESB Selection

Rationale. There are strong security, privacy and policy requirements that

need to be met by the ESB product. There is no context-specific evidence

to support that these requirements are met by any of the ESB products

being evaluated.

• Perform a preliminary selection based on available evaluation results.

• Work with vendor to obtain a short-term evaluation license.

• Implement the initial SOA Infrastructure

• Install products

• Define standards

• Set up registry …

SMART Exercise 3: Develop Migration Strategy

115

© 2008 Carnegie Mellon University

Implement Get Test Catalog Service as a Pilot

Rationale. Get Test Catalog is a simple service that is used by multiple

internal and external business processes.

• Because the data in the catalog is not patient-related, the service can be

more easily exposed to external systems to start testing

• Will provide data to fine-tune migration estimates

• Will also determine if the ―double-wrapper‖ (existing code is a Java

wrapper to a COBOL component) has any performance problems

SMART Exercise 3: Develop Migration Strategy

116

© 2008 Carnegie Mellon University

Validate Security and Privacy Requirements

Rationale. LIS is relying on the infrastructure to protect any personally-

identifiable information in accordance to HIPAA requirements. The security

and privacy provided by the infrastructure may not be enough.

• T-Checks can easily determine if privacy and security requirements are

met by the selected ESB product.

• If requirements are not met, the T-Checks can provide information to

determine additional elements that would need to be added to the

infrastructure to meet requirements.

SMART Exercise 3: Develop Migration Strategy

117

© 2008 Carnegie Mellon University

Understand Policy Management Component

Rationale. LIS is relying on the policy manager to manage all policy

currently embedded in LIS components. It is not clear if what is meant by

policy in the ESB is the same as what is meant by policy in LIS.

• T-Checks can easily use LIS policy information as the context for

experimentation.

• If requirements are not met, the T-Checks can provide information to

determine additional elements that would need to be added to the

infrastructure to meet requirements.

SMART Exercise 3: Develop Migration Strategy

118

© 2008 Carnegie Mellon University

Evaluate Initial SOA Infrastructure

Rationale. Lessons learned from the pilot and experiment results need to

be evaluated against the initial SOA infrastructure.

Potential findings

• Requirements not met by the infrastructure

• Constraints on services

• Quality of service issues

• Incompatibilities with legacy code

• Initial ESB selection is not appropriate

SMART Exercise 3: Develop Migration Strategy

119

© 2008 Carnegie Mellon University

Implement Final SOA Infrastructure

Rationale. The details of the migration will vary depending on the SOA

infrastructure. It is important to have a stable infrastructure before

adjusting estimates and continuing with the migration.

• Define responsibilities of the infrastructure components.
• Security: Can the service assume that authentication has been done by the

infrastructure? Or does the service need to invoke the security service to

validate authentication?

• Data formatting: Will the service call the data format service? Or will the

data format service be invoked by the infrastructure before calling the

service?

• Define and implement service level agreements and runtime policy

enforcement mechanisms

• Identify areas where ESB vendor support is needed.

SMART Exercise 3: Develop Migration Strategy

120

© 2008 Carnegie Mellon University

Document Implementation Guidelines

Rationale. Implementation guidelines will guarantee that all services

follow the same development processes, use the same checklists, interact

with the infrastructure in the same way, etc.

Beginnings of design-time governance

• Service interface design

• Development checklists

• Service reference architecture

• Testing and deployment procedures

• …

Service Interface Layer

Performs transformations between messages from

service consumers and LIS code

LIS Code Layer

Contains existing LIS code plus new code that had to be

developed to meet service requirements

Data Access Layer

Contains code to access internal and

external data sources

Policy Layer

Contains code to

access Policy

Manager

SMART Exercise 3: Develop Migration Strategy

121

© 2008 Carnegie Mellon University

Adjust Estimates and Create Migration Plan

Rationale. Lessons learned from the pilot and experiment results will

provide additional information on the amount of effort required for

migration.

• Finalize service inputs/outputs based on service consumer

requirements.

• Adjust migration effort estimates to include SOA infrastructure

requirements and any changes in service inputs/outputs.

• Prioritize candidate services.

• Define training needs and provide the training.

SMART Exercise 3: Develop Migration Strategy

122

© 2008 Carnegie Mellon University

Implement Migration Plan

Rationale. Get started! The faster you produce results and start making

services available, the faster people will start using them.

Make sure there is feedback between iterations.

• Incorporate lessons learned.

• Evaluate changes in technology.

SMART Exercise 3: Develop Migration Strategy

123

© 2008 Carnegie Mellon University

Process Revisited

Information gathered during Establish Migration Context, Define Candidate

Services, Describe Existing Capability, Describe Target SOA Environment

Migration Issues

Generates

Addressed In

Provides basis for

Constrain

Cost and Effort Estimates

Migration Strategy

SMART: Develop Migration Strategy

124

© 2008 Carnegie Mellon University

Agenda

Introduction

• SOA Challenges

• Common Misconceptions

• Consequences of Decisions

Introduction to SOA Research Agenda

Pillars of Service-Oriented Systems Development

Challenges of Migration to SOA Environments

SMART (Service Migration and Reuse Technique)

Conclusions

50,000-Foot View: Basic Concepts

125

© 2008 Carnegie Mellon University

Conclusions 1

SOA offers significant potential for

• Leveraging investments in legacy systems by providing a modern interface

to existing capabilities

• Exposing functionality to a greater number of users

They accomplish this by promoting

• Assembly of consumers from existing services

• Platform and language independence

• Reuse of services through loose coupling

• Easy service upgrade due to separation of service interface from service

implementation

Conclusions

126

© 2008 Carnegie Mellon University

Conclusions 2

End-to-end engineering approach for SOA requires addressing the unique

challenges, risks, and technical issues of three different development

perspectives.

• Service consumer developers

• Service developers

• Infrastructure developers

Reuse at the service level is more complex than reuse at module or

component level.

• Designing reusable services requires a different approach, skill set, and

mindset

• Bigger stakeholder community because services are typically reused at

organization and sub-organization level

Conclusions

127

© 2008 Carnegie Mellon University

Conclusions 3

Cost of exposing legacy system functionality as services may be higher

than actually replacing the system with a new service-oriented system.

• Detailed analyses are needed

Reuse in the services world requires

• Identification of requirements of the target SOA infrastructure

• Clear distinction between the needs that can be satisfied by the legacy system

and those that cannot be satisfied

• Systematic analysis of changes that need to be made to work with target SOA

infrastructure

SMART analyzes the viability of reusing legacy components as the basis

for services.

Conclusions

